LIXYS

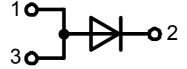
DPG 60 IM 400QB

advanced

V _{RRM} =	400 V
I _{FAV} =	60 A
t _{rr} =	45 ns

Package:

- TO-3P
- Industry standard outline
 - compatible with TO-247
- Epoxy meets UL 94V-0
- RoHS compliant


High Performance Fast Recovery Diode Low Loss and Soft Recovery Single Diode

Part number (Marking on product)

DPG 60 IM 400QB

Features / Advantages:

- Planar passivated chips
- Very low leakage current
- Very short recovery time
- Improved thermal behaviour
- Very low Irm-values
- Very soft recovery behaviour
 Avalanche voltage rated for reliable operation
- Soft reverse recovery for low EMI/RFI
- Low Irm reduces:
- Power dissipation within the diode
- Turn-on loss in the commutating switch

Applications:

- Antiparallel diode for high frequency switching devices
- Antisaturation diode
- Snubber diode
- Free wheeling diode
- Rectifiers in switch mode power supplies (SMPS)
- Uninterruptible power supplies (UPS)

				Ratings			
Symbol	Definition	Conditions		min.	typ.	max.	Unit
V _{RRM}	max. repetitive reverse voltage		T _{vj} = 25 °C			400	V
I _R	reverse current	V _R = 400 V	T _{vj} = 25 °C			1	μA
		V _R = 400 V	T _{vJ} = 150 °C			0.3	mA
V _F	forward voltage	I _F = 60 A	T _{vJ} = 25 °C			1.47	V
		I _F = 120 A				1.80	V
		$I_{F} = 60 A$	T _{vj} = 150 °C			1.22	V
		I _F = 120 A				1.59	V
I _{FAV}	average forward current	rectangular, d = 0.5	T _c = 120 °C			60	А
V _{F0}	threshold voltage	calculation only	T _{vJ} = 175 °C			0.81	V
r _F	slope resistance f for power loss					6.1	mΩ
R_{thJC}	thermal resistance junction to case					0.55	K/W
T _{vj}	virtual junction temperature			-55		175	°C
P _{tot}	total power dissipation		$T_c = 25 °C$			275	W
I _{FSM}	max. forward surge current	$t_p = 10 \text{ ms} (50 \text{ Hz}), \text{ sine}$	T _{vj} = 45 °C			600	Α
I _{RM}	max. reverse recovery current	$I_{\rm F} = 60 {\rm A};$	T _{vJ} = 25 °C		4		Α
		•	T _{vJ} = 125 °C				Α
t m	reverse recovery time	-di _F /dt = 200 A/µs	T _{vj} = 25 °C		45		ns
		V _R = 100 V	T _{vJ} = 125 °C				ns
Cj	junction capacitance	$V_{R} = 200 V; f = 1 MHz$	T _{vj} = 25 °C		60		pF
E _{AS}	non-repetitive avalanche energy	I _{AS} = 9 A; L = 100 μH	T _{vj} = 25 °C			0.5	mJ
I _{AR}	repetitive avalanche current	$V_A = 1.5 \cdot V_R$ typ.; f = 10 kHz				0.9	А
-							

LIXYS

DPG 60 IM 400QB

advanced

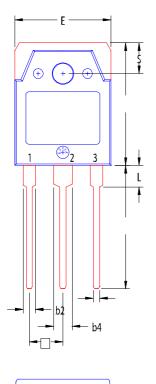
				Ratings		
Symbol	Definition	Conditions	min.	typ.	max.	Unit
I _{RMS}	RMS current	per pin*			70	Α
R_{thCH}	thermal resistance case to heatsink			0.25		K/W
M _D	mounting torque		0.8		1.2	Nm
Fc	mounting force with clip		20		120	Ν
T _{stg}	storage temperature		-55		150	°C
Weight				5		g

* Irms is typically limited by: 1. pin-to-chip resistance; or by 2. current capability of the chip.

A

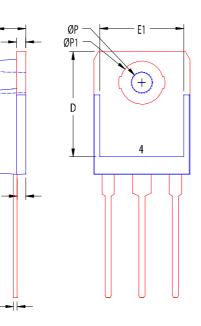
А

С


1 - GATE

2 - DRAIN (COLLECTOR) 3 - SOURCE (EMITTER)

4 - DRAIN (COLLECTOR)


In case of 1, a common cathode/anode configuration and a non-isolated backside, the whole current capability can be used by connecting the backside.

Outlines TO-3P

m

m

C)/// 4	INCHES		MILLIMETERS		
SYM	MIN	MAX	MIN	MAX	
А	.185	.193	4.70	4.90	
A1	.051	.059	1.30	1.50	
A2	.057	.065	1.45	1.65	
b	.035	.045	0.90	1.15	
b2	.075	.087	1.90	2.20	
b4	.114	.126	2.90	3.20	
с	.022	.031	0.55	0.80	
D	.780	.791	19.80	20.10	
D1	.665	.6 77	16.90	17.20	
Е	.610	.622	15.50	15.80	
E1	.531	.539	13.50	13.70	
e	.215 BSC		5.45 BSC		
L	.779	.795	19.80	20.20	
L1	.134	.142	3.40	3.60	
ØP	.126	.134	3.20	3.40	
ØP1	.272	.280	6.90	7.10	
S	.193	.201	4.90	5.10	

All metal area are tin plated.

0602