LIXYS

DSA 30 I 100 PA

advanced

V _{RRM} =	100 V		
I _{FAV} =	30 A		
V _F =	0.78 V		

Schottky Diode Gen²

High Performance Schottky Diode Low Loss and Soft Recovery Single Diode

Part number

DSA 30 I 100 PA

Features / Advantages:

- Very low Vf
- Extremely low switching losses
- low Irm values
- Improved thermal behaviour
- High reliability circuit operation
 Low voltage peaks for reduced protection circuits
- Low noise switching

30 0 1

Applications:

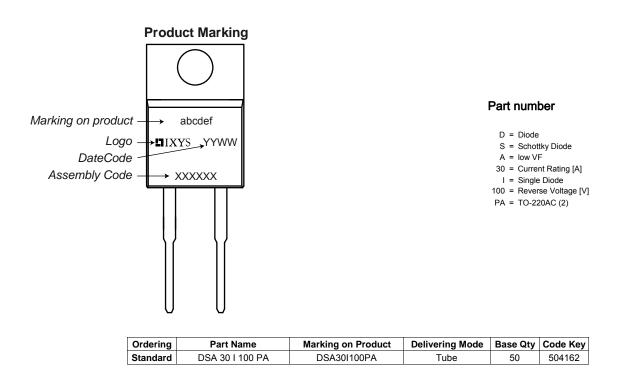
- Rectifiers in switch mode power supplies (SMPS)
- Free wheeling diode in low voltage
- converters

Backside: cathode

Package:

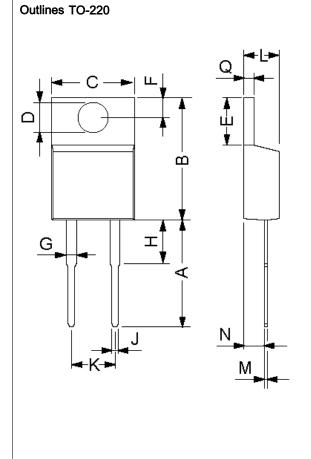
- Housing: TO-220
- Industry standard outline
- Epoxy meets UL 94V-0
- RoHS compliant

				Ratings			
Symbol	Definition	Conditions		min.	typ.	max.	Unit
V _{RRM}	max. repetitive reverse voltage	Τ _ν	J = 25°C			100	V
I _R	reverse current	$V_R = 100 V$ T_v	, = 25°C			0.9	mA
		V _R = 100 V T _v	_{/J} = 125°C			5	mA
V _F	forward voltage	$I_F = 30 A T_V$,, = 25°C			0.95	V
		$I_{F} = 60 A$				1.15	V
		$I_F = 30 A T_V$	/J = 125°C			0.78	V
		$I_{F} = 60 A$				1.01	V
I _{FAV}	average forward current	rectangular d = 0.5 T _c	c = 150°C			30	Α
V _{F0}	threshold voltage	T	_{∕J} = 175°C			0.46	V
۲ _F	slope resistance } for power loss cal	culation only				7.8	mΩ
R _{thJC}	thermal resistance junction to case					0.85	K/W
T _{vj}	virtual junction temperature			-55		175	°C
P _{tot}	total power dissipation	Tc	c = 25°C			175	W
I _{FSM}	max. forward surge current	t = 10 ms (50 Hz), sine T _v	_{/J} = 45°C			230	Α
C	junction capacitance	$V_{R} = 12 V; f = 1 MHz$ T_{V}	, = 25°C		289		pF
E _{AS}	non-repetitive avalanche energy	I _{AS} = 10 A; L = 100 μH Τ _ν	_{/J} = 25°C			5	mJ
I _{AR}	repetitive avalanche current	$V_A = 1.5 \cdot V_R$ typ.: f = 10 kHz				1	Α


DSA 30 I 100 PA

advanced

				Ratings			
Symbol	Definition	Conditions	min.	typ.	max.	Unit	
I _{RMS}	RMS current	per pin ¹⁾			35	А	
R _{thCH}	thermal resistance case to heatsink			0.50		K/W	
T _{stg}	storage temperature		-55		150	°C	
Weight				2		g	
M _D	mounting torque		0.4		0.8	Nm	
F _c	mounting force with clip		20		60	Ν	


¹⁾ I_{RMS} is typically limited by: 1. pin-to-chip resistance; or by 2. current capability of the chip.

In case of 1, a common cathode/anode configuration and a non-isolated backside, the whole current capability can be used by connecting the backside.

advanced

Dim.	Millimeter		Inches		
Dim.	Min.	Max.	Min.	Max.	
А	12.7	14.73	0.5	0.58	
В	14.23	16.51	0.56	0.65	
C	9.66	10.66	0.38	0.42	
D	3.54	4.08	0.139	0.161	
Е	5.85	6.85	2.3	0.42	
F	2.54	3.42	0.1	0.135	
G	1.15	1.77	0.045	0.07	
Н	-	6.35	-	0.25	
J	0.64	0.89	0.025	0.035	
К	4.83	5.33	0.19	0.21	
L	3.56	4.82	0.14	0.19	
М	0.51	0.76	0.02	0.03	
Ν	2.04	2.49	0.08	0.115	
Q	0.64	1.39	0.025	0.055	

IXYS reserves the right to change limits, conditions and dimensions.