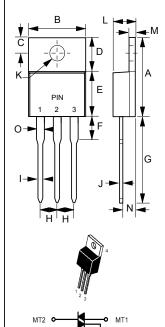


T12M50F-B SERIES

Triacs Sillicon Bidirectional Thyristors

TRIACS 12 AMPERES RMS 600 VOLTS


FEATURES

- Blocking Voltage to 600 Volts
- All Diffused and Glass Passivated Junctions for
- Greater Parameter Uniformity and Stability
- Gate Triggering Guaranteed in Four Modes
- Pb Free Package

MECHANICAL DATA

• Case: Molded plastic

• Weight: 0.07 ounces, 2.0 grams

TO-220AB TO-220AB MIN. DIM. MAX. 14.22 15.88 9.65 10.67 2.54 3.43 D 6.86 5.84 Ε 9.28 8.26 6.35 G 12.70 14.73 2.29 2.79 0.51 1.14 0.40 0.67 3.53Ø 4.09 Ø 3.56 4.83 1.14 1.40 N 2.92 2.03 0 1.37 1.17

PIN ASSIGNMENT			
1	Main Terminal 1		
2	Main Terminal 2		
3	Gate		
4	Main Terminal 2		

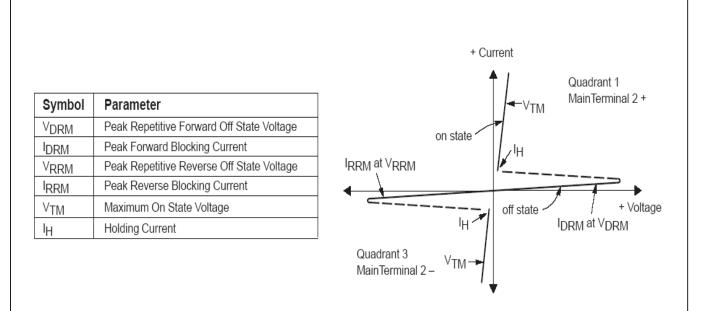
All Dimensions in millimeter

MAXIMUM RATINGS (Tj= 25℃ unless otherwise noticed)

Rating		Value	Unit
Peak Repetitive Off– State Voltage (1) (T _J = -40 to 125°C, Sine Wave, 50 to 60 Hz; Gate Open) T12M50F600B	VDRM, VRRM	600	Volts
On-State RMS Current (Tc = +85°c) Full Cycle Sine Wave 50 to 60 Hz	IT(RMS)	12	Amp
Peak Non-Repetitive Surge Current (One Full Cycle Sine Wave, 60 Hz, TJ= +25°ℂ) Preceded and followed by rated current.		100	Amps
Circuit Fusing Consideration (t = 8.3 ms)		40	A ² s
Peak Gate Power (Tc = +85℃, Tp= 10 us)		20	Watt
Average Gate Power (Tc = +85℃, t=8.3 ms)		0.35	Watt
Peak Gate Current (Tc = +85℃, Tp =10 us)	lgм	2	Amp
rating Junction Temperature Range		-40 to +125	°C
Storage Temperature Range	Tstg	-40 to +150	°C
Notice: (1) VDRM and VRRM for all types can be applied on a continuous basis. Blocking	RE	V. 4, Oct-2010, K	TXC25

Notice: (1) VDRM and VRRM for all types can be applied on a continuous basis. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

Characteristic	Symbol	Value	Unit
Thermal Resistance - Junction to Case - Junction to Ambient		2.0 62.5	°C/W
Maximum Lead Temperature for Soldering Purposes 1/8" from Case for 10 Seconds	TL	260	$^{\circ}\!\mathbb{C}$


ELECTRICAL CHARACTERISTICS (Tc=25°C unless otherwise noted, Electrical apply in both directions)

Characteristics	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS				1	
Peak Reptitive Forward or Reverse Blocking Current (VD=Rated VDRM, VRRM; Gate Open) TJ=125℃ TJ=125℃	IDRM IRRM			10 2.0	uA mA
ON CHARACTERISTICS		•			
Peak On-State Voltage (ITM= \pm 17A Peak @Tp=1 to 2 ms, Duty Cycle \leq 2%)	Vтм		1.3	1.75	Volts
Gate Trigger Current (VD = 12Vdc; RL = 100 Ohms)	IGT1 IGT2 IGT3 IGT4		12 12 20 35	50 50 50 75	mA
Gate Trigger Voltage (V _D = 12 Vdc; R _L =100 Ohms)	VGT1 VGT2 VGT3 VGT4		0.9 0.9 1.1 1.4	2.0 2.0 2.0 2.5	Volts
Holding Current (VD = 12 V, Initiating Current = ± 200 mA, Gate Open)	lн		6.0	50	mA
Gate Non - Trigger Voltage (Main Terminal Voltage=12 V, RL =100 Ohms, TJ=125℃) All Four Quadrants	VGD	0.2			Volts
Turn-On Time (VD = Rated VDRM , ITM = 17 A, IGT = 120 mA) Rise Time=0.1 us, Pulse Windth= 2 us)	tgt		1.5		us

DYNAMIC CHARACTERISTICS

Critical Rate of Rise of Off-State Voltage (VD=Rated VDRM, Exponential Waveform, TJ=85℃)	dv/dt	 100	 V/us
Critical Rate of Rise of Commutation Voltage (V _D = Rated VDRM , I _{TM} = 17 A, Commutating di/dt = 6.1 A/ms, Gate Unenergized, Tc = 85℃)	dv/dt(c)	 5.0	 V/us

Quadrant Definitions

All polarities are referenced to MT1 Whith in -phase signal (using standard AC lines) quadrants I and III are used

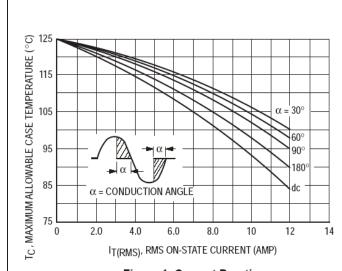


Figure 1. Current Derating

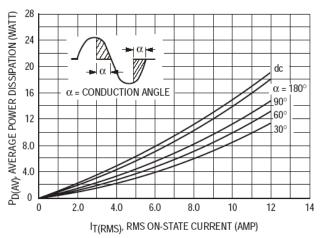


Figure 2. Power Dissipation

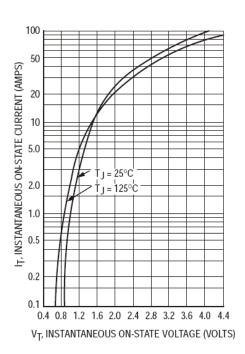


Figure 3. Maximum On–State Voltage Characteristics

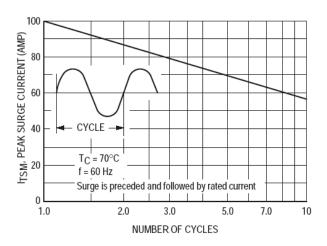
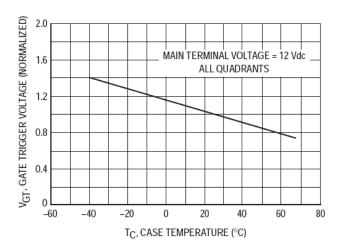



Figure 4. Maximum Non-Repetitive Surge Current

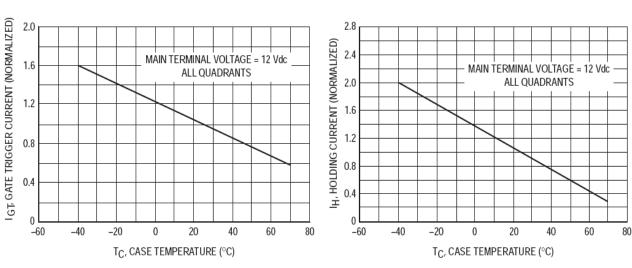


Figure 6. Typical Gate Trigger Current

Figure 7. Typical Holding Current

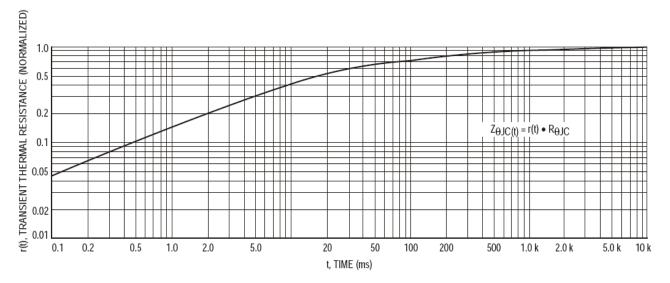


Figure 8. Thermal Response

Important Notice and Disclaimer

LSC reserves the right to make changes to this document and its products and specifications at any time without notice. Customers should obtain and confirm the latest product information and specifications before final design, purchase or use.

LSC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does LSC assume any liability for application assistance or customer product design. LSC does not warrant or accept any liability with products which are purchased or used for any unintended or unauthorized application.

No license is granted by implication or otherwise under any intellectual property rights of LSC.

LSC products are not authorized for use as critical components in life support devices or systems without express written approval of LSC.