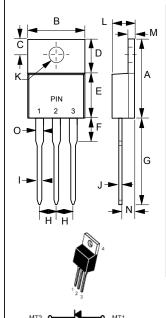


Sensitive Gate Triacs Sillicon Bidirectional Thyristors

TRIACS 8 AMPERES RMS 600 VOLTS

TO-220AB


FEATURES

- Sensitive Gate Allows Triggering by Microcontrollers and other Logic Circuits
- Uniform Gate Trigger Currents in Three Quadrants; Q1, Q2, and Q3
- High Commutating di/dt 8.0 A/ms Minimum at 110°C
- Maximum Values of IGT, VGT and IH Specified for Ease of Design
- On-State Current Rating of 8 Amperes RMS at 70°C
- High Surge Current Capability 70 Amperes
- Blocking Voltage to 800 Volts
- Rugged, Economical TO220AB Package
- Pb-Free Package

MECHANICAL DATA

• Case: Molded plastic

• Weight: 0.07 ounces, 2.0 grams

TO-220AB					
DIM.	MIN.	MAX.			
Α	14.22	15.88			
В	9.65	10.67			
С	2.54	3.43			
D	5.84	6.86			
E	8.26	9.28			
F	-	6.35			
G	12.70	14.73			
Н	2.29	2.79			
I	0.51	1.14			
J	0.40	0.67			
K	3.53 Ø	4.09 Ø			
L	3.56	4.83			
М	1.14	1.40			
N	2.03	2.92			
0	1.17	1.37			
All Dime	nsions in r	nillimeter			

	PIN ASSIGNMENT
1	Main Terminal 1
2	Main Terminal 2
3	Gate
4	Main Terminal 2

MAXIMUM RATINGS (Tj= 25℃ unless otherwise noticed)

Rating		Value	Unit
Peak Repetitive Off– State Voltage (1) (TJ= -40 to 110℃, Sine Wave, 50 to 60 Hz; Gate Open)	Vdrm, Vrrm	600	Volts
On-State RMS Current (Full Cycle Sine Wave 50 to 60 Hz, Tc =70℃)	IT(RMS)	8.0	Amp
Peak Non-Repetitive Surge Current (One Full Cycle Sine Wave, 60 Hz, TJ= 25℃)	Ітѕм	70	Amps
Circuit Fusing Consideration (t = 8.3 ms)	l ² t	20	A ² s
Peak Gate Power (Tc = 70°C, Tp≦1.0 us)	Рсм	16	Watt
Average Gate Power (Tc = 70°C, t = 8.3 ms)	PG(AV)	0.35	Watt
Operating Junction Temperature Range	TJ	-40 to +110	°C
Storage Temperature Range	Tstg	-40 to +150	°C
Notice: (1) VDRM and VRRM for all types can be applied on a continuous basis. Blocking	REV	. 7, Dec-2010, K	TXC08

Notice: (1) VDRM and VRRM for all types can be applied on a continuous basis. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

THERM	$\Lambda I \subset \coprod A$	ADACT	EDICT	100
IDERIVI	AL CD	ARAGI	ERIST	10.5

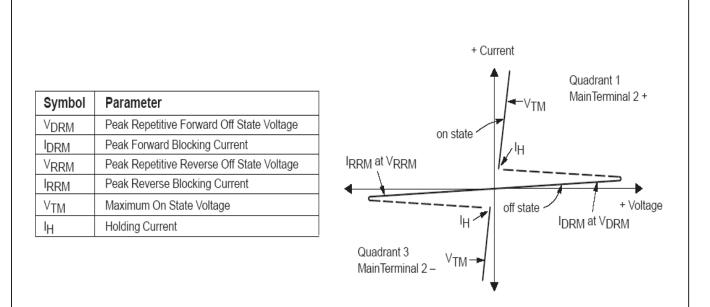
Characteristic	Symbol	Value	Unit
Thermal Resistance - Junction to Case - Junction to Ambient	RthJC RthJA	2.2 62.5	°C/ W
Maximum Lead Temperature for Soldering Purposes 1/8" from Case for 10 Seconds	TL	260	$^{\circ}$ C

ELECTRICAL CHARACTERISTICS (TJ=25°C unless otherwise noted; Electrical apply in both directions)

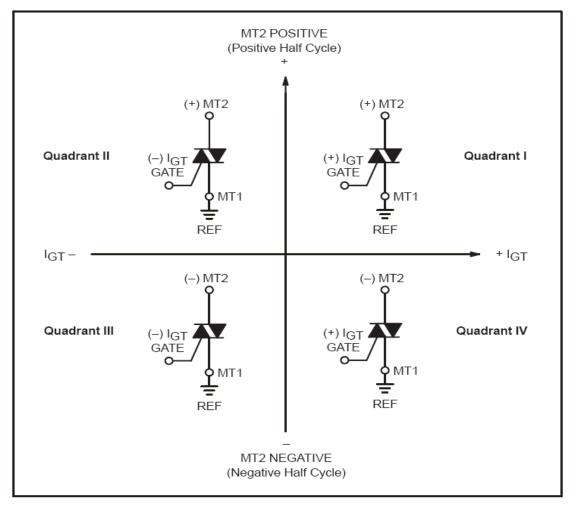
Characteristics	Symbol	Min	Тур	Max	Unit
-----------------	--------	-----	-----	-----	------

OFF CHARACTERISTICS

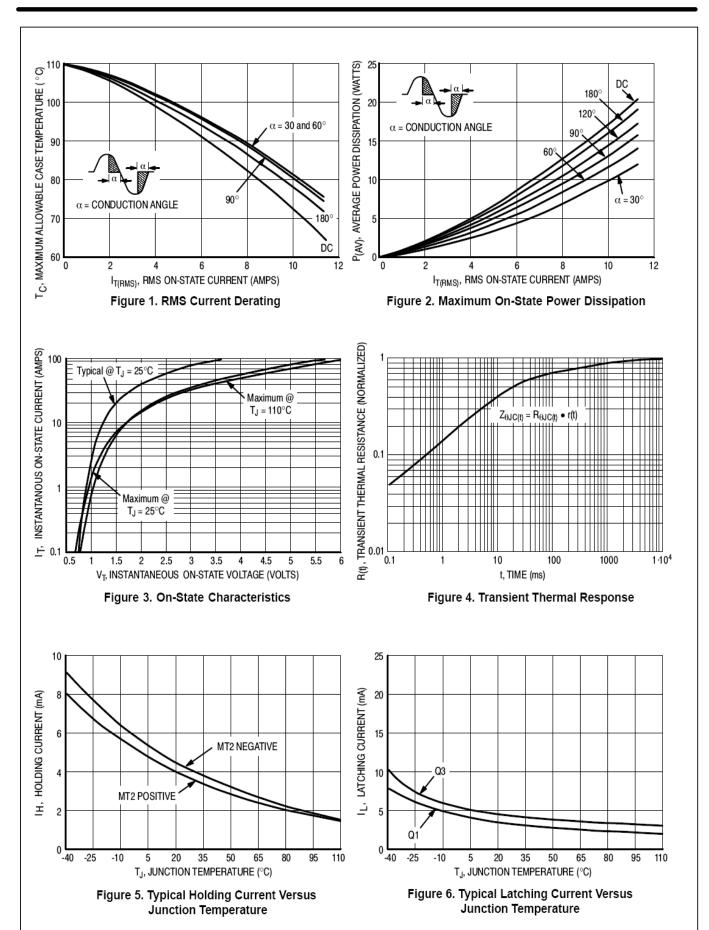
Peak Reptitive Forward or Reverse Blocking Current (VD=Rated VDRM, VRRM; Gate Open)	TJ=25℃ TJ=110℃	IDRM IRRM	 	10 2.0	uA mA


ON CHARACTERISTICS

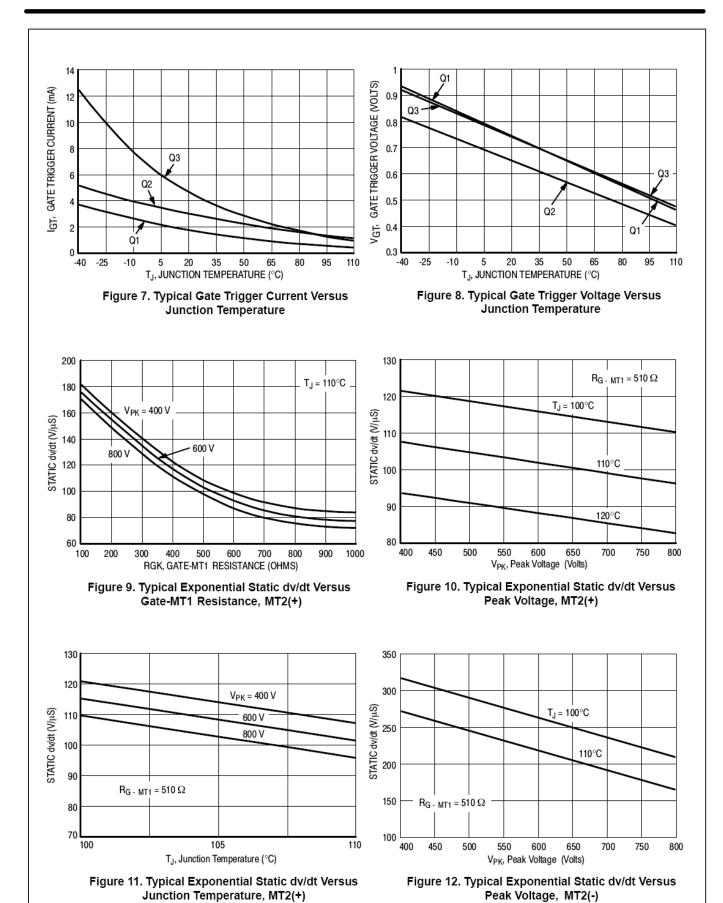
Peak On-State Voltage (ITM= \pm 11A Peak @Tp \leq 2.0 ms, Duty Cycle \leq 2%)	Vтм			1.85	Volts
Gate Trigger Current (V _D = 12V; R _L = 100 Ohms)	IGT1 IGT2 IGT3		2.0 3.0 3.0	5.0 5.0 5.0	mA
Gate Trigger Voltage (V _D = 12 V; R _L =100 Ohms)	VGT1 VGT2 VGT3	0.45 0.45 0.45	0.62 0.60 0.65	1.5 1.5 1.5	Volts
Latching Current (V _D = 24 V, IG = 5 mA)	L1 L2 L3		5.0 10 5.0	15 20 15	mA
Holding Current (VD = 12 V, Initiating Current = ± 150 mA, Gate Open)	Тн		3.0	10	mA


DYNAMIC CHARACTERISTICS

Critical Rate of Rise of Off-State Voltage (VD = Rated VDRM, Exponential Waveform, RGK=510 Ohms, TJ=110°C)	dv/dt	25	75	 V/us
Rate of Change of Commutating Current (VD = 400 V, ITM = 3.5A, Commutating dv/dt = 10 V/us, Gate Open, T_J = 110 $^{\circ}$ C, f = 500 Hz, Cs = 0.01 uF, Rs = 15 Ohms)	di/dt(c)	8.0	10	 A/ms



Quadrant Definitions



All polarities are referenced to MT1 Whith in -phase signal (using standard AC lines) quadrants I and III are used

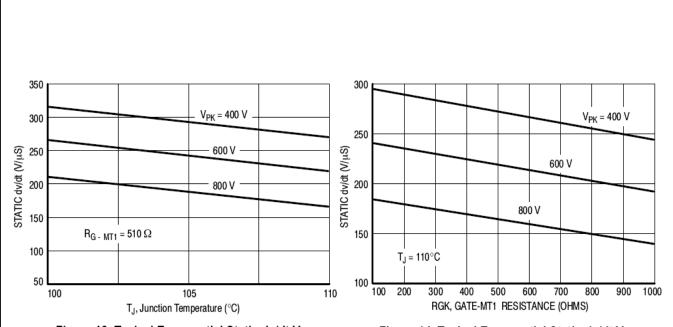


Figure 13. Typical Exponential Static dv/dt Versus Junction Temperature, MT2(-)

Figure 14. Typical Exponential Static dv/dt Versus Gate-MT1 Resistance, MT2(-)

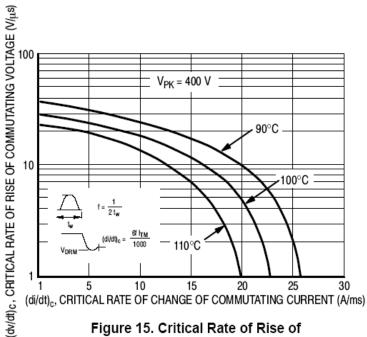


Figure 15. Critical Rate of Rise of **Commutating Voltage**

Important Notice and Disclaimer

LSC reserves the right to make changes to this document and its products and specifications at any time without notice. Customers should obtain and confirm the latest product information and specifications before final design, purchase or use.

LSC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does LSC assume any liability for application assistance or customer product design. LSC does not warrant or accept any liability with products which are purchased or used for any unintended or unauthorized application.

No license is granted by implication or otherwise under any intellectual property rights of LSC.

LSC products are not authorized for use as critical components in life support devices or systems without express written approval of LSC.