

400V N-Channel MOSFET

Description

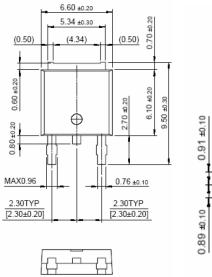
The MSD4N40 is a N-channel enhancement-mode MOSFET, providing the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost effectiveness. The TO-252 package is universally preferred for all commercial-industrial applications

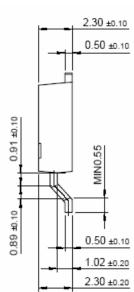
Features

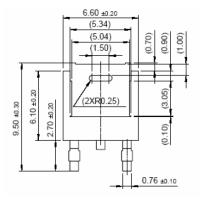
- · Originative New Design
- 100% EAS Test
- Rugged Gate Oxide Technology
- Extremely Low Intrinsic Capacitances
- · Remarkable Switching Characteristics
- Unequalled Gate Charge: 25 nC (Typ.)
- · Extended Safe Operating Area
- Lower RDS(ON): 0.78 Ω (Typ.) @VGS=10V
- RoHS compliant package

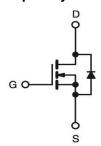
Application

- · Low power battery chargers
- Switch mode power supply (SMPS)
- DC-AC converters.


Packing & Order Information


Part No./T: 2,500/Reel


Part No./ R: 80/Tube, 4,000/Box


RoHS COMPLIANT

Graphic symbol

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings (Tc=25°C unless otherwise noted)						
Symbol	Parameter	Value	Unit			
V_{DSS}	Drain-Source Voltage	400	V			
V _{GS}	Gate-Source Voltage	±30	V			
I _D	Continuous Drain Current (TC=25°C)	4.5	А			
	Continuous Drain Current (T _C =100°C)	3.0	Α			

400V N-Channel MOSFET

Absolute N	Absolute Maximum Ratings (Tc=25°C unless otherwise noted)					
Symbol	Parameter	Value	Unit			
I_{DM}	Pulsed Drain Current	22	Α			
EAS	Single Pulsed Avalanche Energy	270	mJ			
EAR	Repetitive Avalanche Energy	7.3	mJ			
dV/dt	Peak Diode Recovery dV/dt	4.5	V/ns			
	Power Dissipation (T _C =25°C)	2.5	W			
P_{D}	- Derate above 25°C	0.38	W			
T _J /T _{STG}	Operating Junction and Storage Temperature	-55 to +150	°C			
TL	Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds	300	°C			

[•]Drain current limited by maximum junction temperature

Thermal Res	Thermal Resistance Characteristics (Tc=25°C unless otherwise noted)					
Symbol	Parameter	Тур.	Max.	Units		
$R_{ heta JC}$	Junction-to-Case		1.72	°C/W		
$R_{\theta JA}$	Junction-to- Ambient		83.3	C/VV		

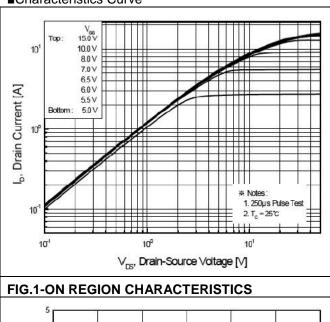
On Characteristics						
Symbol	Parameter	Test Conditions	Min	Тур.	Max.	Units
V_{GS}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_{D} = 250 \mu A$	2.0		4.0	V
R _{DS(ON)}	Static Drain-Source On-Resistance	$V_{GS} = 10 \text{ V}$, $I_D = 2.25 \text{ A}$		0.78	0.9	Ω

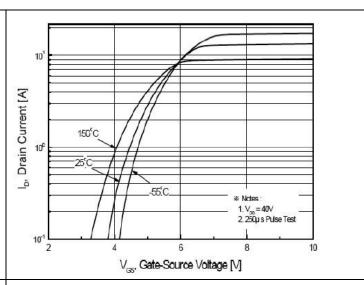
Off Chara	Off Characteristics						
Symbol	Parameter	Test Conditions	Min	Тур.	Max.	Units	
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_D = 250 \mu A$	400			V	
ΔBV_{DSS} $/\Delta T_{J}$	Breakdown Voltage Temperature Coefficient	I _D = 250μA, Referenced to 25°C		0.54		V/°C	
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 400 \text{ V}$, $V_{GS} = 0 \text{ V}$ $V_{DS} = 320 \text{ V}$, $T_C = 125 ^{\circ}\text{C}$			1 10	μА	
I _{GSSF}	Gate-Body Leakage Current, Forward	$V_{GS} = 30 \text{ V}$, $V_{DS} = 0 \text{ V}$			100	nA	
I _{GSSR}	Gate-Body Leakage Current, Reverse	$V_{GS} = -30 \text{ V}$, $V_{DS} = 0 \text{ V}$			-100	nA	

400V N-Channel MOSFET

Dynamic	Dynamic Characteristics						
Symbol	Parameter	Test Conditions	Min	Тур.	Max.	Units	
C_{ISS}	Input Capacitance			480	625	pF	
C _{OSS}	Output Capacitance	$V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$ F = 1.0 MHz		80	105	pF	
C_{RSS}	Reverse Transfer Capacitance	1 = 1.0WH12		15	20	pF	
$t_{d(on)}$	Turn-On Time			15	35	ns	
t _r	Turn-On Time	$V_{DS} = 200 \text{ V}, I_D = 4.5 \text{ A},$		65	140	ns	
$t_{\text{d(off)}}$	Turn-Off Delay Time	$R_G = 25 \Omega$		23	55	ns	
tf	Turn-Off Fall Time			40	85	ns	
Q_g	Total Gate Charge			16	20	nC	
Q _{gs}	Gate-Source Charge	$V_{DS} = 320 \text{ V}, I_D = 4.5 \text{ A},$ $V_{GS} = 10 \text{ V}$		2.3		nC	
Q_{gd}	Gate-Drain Charge	V _{GS} = 10 V		8.5		nC	

Symbol	Parameter	Test Conditions	Min	Typ.	Max.	Units
Syllibol	Farameter	Test Conditions	IAIIII	iyp.	IVIAA.	Ullits
Is	Continuous Source-Drain Diode Forward Current				4.5	A
I _{SM}	Pulsed Source-Drain Diode Forward Current				18	
V_{SD}	Source-Drain Diode Forward Voltage	I _S = 4.5 A , V _{GS} = 0 V			1.4	V
t _{rr}	Reverse Recovery Time	I _S = 4.5 A , V _{GS} = 0 V		230		ns
Q _{rr}	Reverse Recovery Charge	diF/dt = 100A/µs		1.7		μC


NOTE:


- 1. Repetitive Rating: Pulse width limited by maximum junction temperature
- 2. I_{AS} =4.5A, V_{DD} =50V, R_{G} =25 Ω , Starting TJ =25 $^{\circ}$ C
- 3. $I_{SD}\leq4.5A$, di/dt $\leq300A/\mu s$, VDD \leq BVDSS , Starting TJ =25 °C
- 4. Pulse Test : Pulse Width ≤ 300µs, Duty Cycle ≤ 2%
- 5. Essentially Independent of Operating Temperature

400V N-Channel MOSFET

■Characteristics Curve

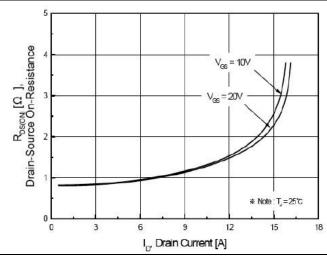


FIG.2-TRANSFER CHARACTERISTICS

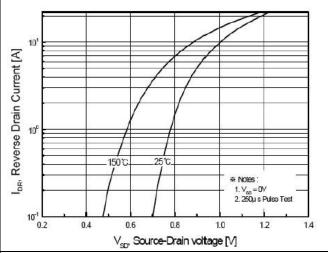


FIG.3-ON RESISTANCE VARIATION VS DRAIN CURRENT AND GATE VOLTAGE

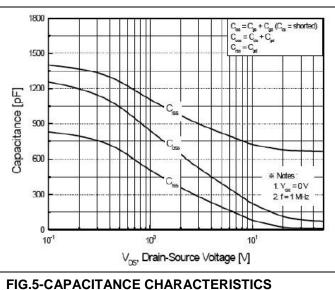


FIG.4-BODY DIODE FORWARD VOLTAGE VARIATION WITH SOURCE CURRENT AND TEMPERATURE

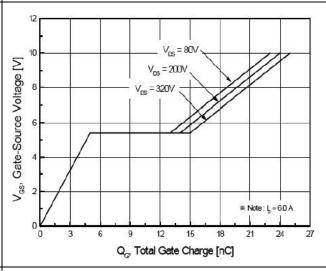
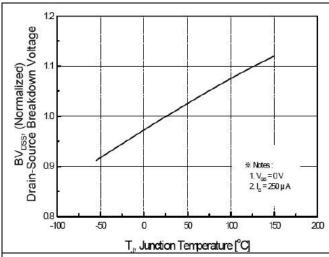



FIG.6-GATE CHARGE CHARACTERISTICS

400V N-Channel MOSFET

■Characteristics Curve

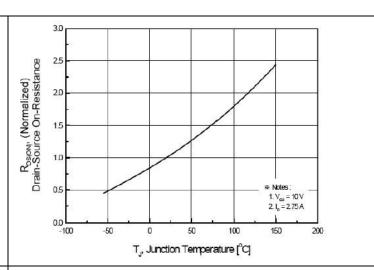


FIG.7-BREAKDOWN VOLTAGE VARIATION VS TEMPERATURE

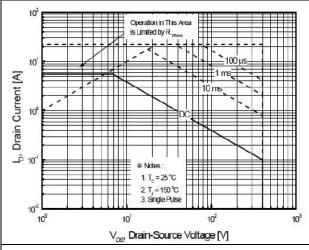


FIG.8-ON-RESISTANCE VARIATION VS TEMPERATURE

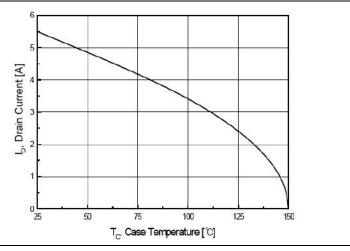
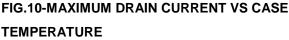



FIG.9-MAXIMUM SAFE OPERATING AREA

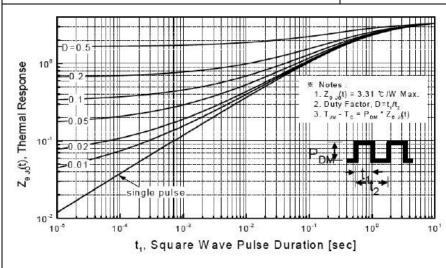


FIG.11-TRANSIENT THERMAL RESPONSE CURVE

400V N-Channel MOSFET

■Characteristics Test Circuit & Waveform

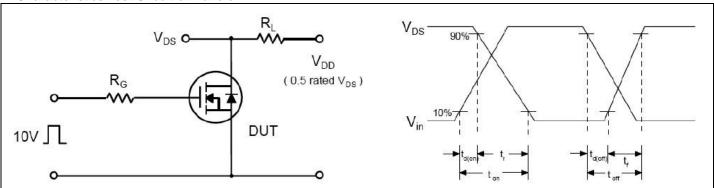


Fig 12. Resistive Switching Test Circuit & Waveforms

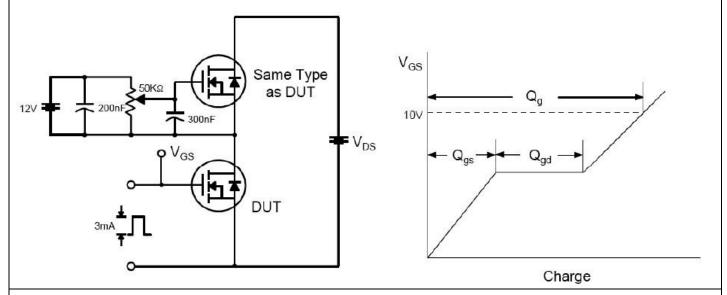
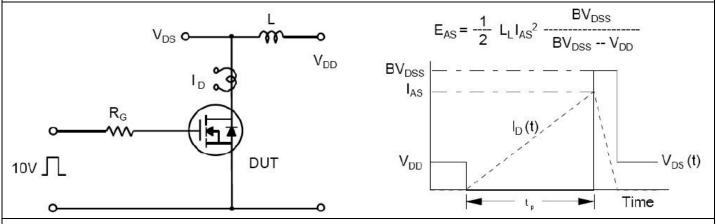



Fig 13. Gate Charge Test Circuit & Waveform

400V N-Channel MOSFET

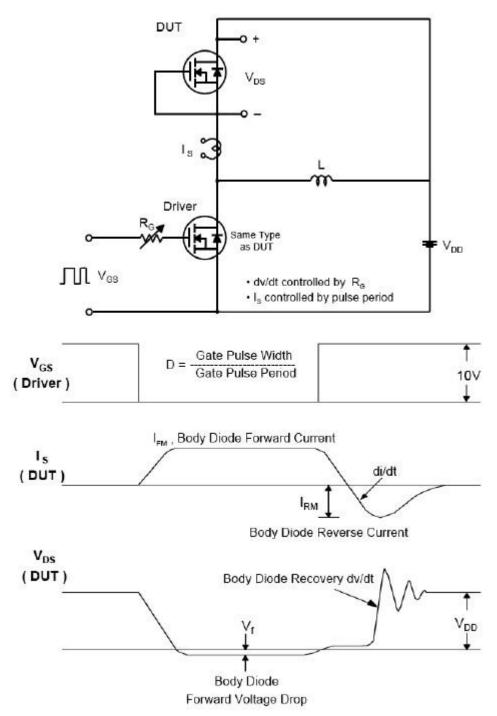


Fig 15. Peak Diode Recovery dv/dt Test Circuit & Waveforms

400V N-Channel MOSFET

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE. Bruckewell Technology Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Bruckewell"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product. Bruckewell makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Bruckewell disclaims

- (i) Any and all liability arising out of the application or use of any product.
- (ii) Any and all liability, including without limitation special, consequential or incidental damages.
- (iii) Any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Bruckewell's knowledge of typical requirements that are often placed on Bruckewell products in generic applications.

Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time.

Product specifications do not expand or otherwise modify Bruckewell's terms and conditions of purchase, including but not limited to the warranty expressed therein.