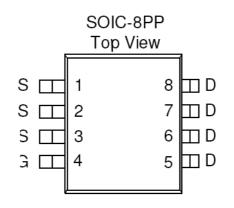
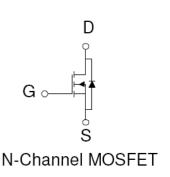


MSS34N40


N-Channel 40-V (D-S) MOSFET


FEATURES

- •Low RDS (on) trench technology
- ·Low thermal impedance
- ·Fast switching speed

Typical Applications:

- •PoE Power Sourcing Equipment
- •PoE Powered Devices
- Telecom DC/DC converters
- White LED boost converters

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS (T _A = 25 °C UNLESS OTHERWISE NOTED)								
Parameter		Symbol	Limit	Units				
Drain-Source Voltage		V_{DS}	40	V				
Gate-Source Voltage			±20	v				
Continuous Drain Current ^a	$T_A=25^{\circ}C$	T_	±34					
	$T_A=25^{\circ}C$ $T_A=70^{\circ}C$	1D	±27	A				
Pulsed Drain Current ^b		I_{DM}	±50					
Continuous Source Current (Diode Conduction) ^a			2.3	A				
D. Dissipation ^a	$T_A=25^{\circ}C$	P_{D}	5.0	w				
Power Dissipation ^a	$T_A=25$ °C $T_A=70$ °C	ГБ	3.2	**				
Operating Junction and Storage Temperature Range		T_J, T_{stg}	-55 to 150	°C				

THERMAL RESISTANCE RATINGS								
Parameter		Symbol	Maximum	Units				
Maximum Junction-to-Ambient ^a	t <= 10 sec	D	25	°C/W				
	Steady State	$R_{\theta JA}$	65	°C/W				

Notes

a. Surface Mounted on 1" x 1" FR4 Board.

b. Pulse width limited by maximum junction temperature

SPECIFICATIONS (T _A = 25°C UNLESS OTHERWISE NOTED)								
Parameter	Crombal	The A. Com Pittle and	Limits			T1:4		
	Symbol	Test Conditions	Min	Тур	Max	Unit		
Static								
Gate-Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = 250 \text{ uA}$	1		3	V		
Gate-Body Leakage	I_{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = 20 \text{ V}$			±100	nA		
Zero Gate Voltage Drain Current		$V_{DS} = 32 \text{ V}, V_{GS} = 0 \text{ V}$			1	uA		
	I_{DSS}	$V_{DS} = 32 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 55^{\circ}\text{C}$			25	uA		
On-State Drain Current ^A	$I_{D(on)}$	$V_{DS} = 5 \text{ V}, V_{GS} = 10 \text{ V}$	34			A		
Drain-Source On-Resistance ^A	r	$V_{GS} = 10 \text{ V}, I_D = 7.5 \text{ A}$			3	mΩ		
	r _{DS(on)}	$V_{GS} = 4.5 \text{ V}, I_{D} = 7 \text{ A}$			5			
Forward Tranconductance ^A	g_{fs}	$V_{DS} = 15 \text{ V}, I_{D} = 7.5 \text{ A}$		22		S		
Diode Forward Voltage	V_{SD}	$I_S = 2.1 \text{ A}, V_{GS} = 0 \text{ V}$		1.1		V		
Dynamic ^b	-							
Total Gate Charge	Q_{g}	$V_{DS} = 15 \text{ V}, V_{GS} = 4.5 \text{ V},$ $I_{D} = 7.5 \text{ A}$		50		пС		
Gate-Source Charge	Q_{gs}			20				
Gate-Drain Charge	Q_{gd}	$I_{\rm D} = 7.5~{\rm A}$		20				
Turn-On Delay Time	t _{d(on)}			40				
Rise Time	t _r	$V_{DD} = 25 \text{ V}, R_L = 25 \Omega, ID = 34 \text{ A},$		60		nS		
Turn-Off Delay Time	$t_{d(off)}$	$V_{GEN} = 10 \text{ V}$		150				
Fall-Time	t _f			90				

Notes

- a. Pulse test: PW \leq 300us duty cycle \leq 2%.
- b. Guaranteed by design, not subject to production testing.