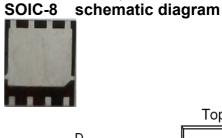
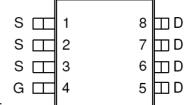
Brückewell Bruckewell Technology Corp., Ltd.

http://www.bruckewell-semicon.com/ N-Channel 30-V (D-S) MOSFET

MSC22N03


These miniature surface mount MOSFETs utilize a high cell density trench process to provide low RDS(on) and to ensure minimal power loss and heat dissipation. Typical applications are DC-DC converters and power management in portable and battery-powered products such as computers, printers, and PCMCIA cards, cellular and cordless telephones.

Key Features:


- •Low rDS(on) provides higher efficiency and extends battery life
- •Low thermal impedance copper lead frame SOIC-8 saves board space

•Fast switching speed

• High performance trench technology

Top View

N-Channel MOSFET

ABSOLUTE MAXIMUM RATINGS (T _A = 25 °C UNLESS OTHERWISE NOTED)							
Parame te r	Symbol	Maximum	Units				
Drain-Source Voltage			30	v			
Gate-Source Voltage			20	v			
	T _A =25°C	т	22				
Continuous Drain Current ^a	T _A =25°C T _A =70°C	ID	18	А			
Pulsed Drain Current ^b	I _{DM}	50					
Continuous Source Current (Diode Conduction) ^a		Is	2.3	А			
	T _A =25°C	р	5	w			
Power Dissipation ^a	T _A =25°C T _A =70°C	Р _D	2.2	vv			
Operating Junction and Storage Temperature Range	-	TJ, Tstg	-55 to 150	°C			

THERMAL RESISTANCE RATINGS						
Parameter	Symbol	Maximum	1 Units			
a a a a a a	t <= 10 sec	р	25	°C/W		
Maximum Junction-to-Ambient ^a	Steady State	R _{0JA}	65	°C/W		

Notes

a. Surface Mounted on 1" x 1" FR4 Board.

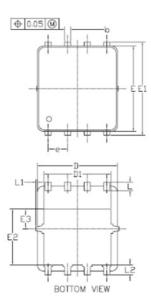
b. Pulse width limited by maximum junction temperature

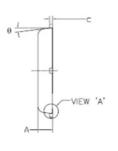
Brückewell Bruckewell Technology Corp., Ltd.

http://www.bruckewell-semicon.com/

SPECIFICATIONS ($T_A = 25^{\circ}C$ UNLESS OTHERWISE NOTED)							
Parame te r	Complex 1		Limits			TI	
	Symbol	Test Conditions	Min	Тур	Max	Unit	
Static							
Gate-Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = 250 \text{ uA}$	1			V	
Gate-Body Leakage	Igss	$V_{DS} = 0 V, V_{GS} = 20 V$			100	nA	
Zara Cata Valtara Drain Current	I	$V_{DS} = 24 V, V_{GS} = 0 V$			1		
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = 24 \text{ V}, V_{GS} = 0 \text{ V}, T_J = 55^{\circ}\text{C}$			5	uA	
On-State Drain Current ^A	ID(on)	$V_{DS} = 5 V, V_{GS} = 10 V$	40			А	
Dia o Dia A	IDS(on)	$V_{GS} = 10 \text{ V}, I_D = 2 \text{ A}$			7.5		
Drain-Source On-Resistance ^A		$V_{GS} = 4.5 V$, $I_D = 2 A$		11.		mΩ	
Forward Tranconductance ^A	gńs	VDS = 15 V, ID = 2 A		40		S	
Diode Forward Voltage	Vsd	$I_S = 2 A, V_{GS} = 0 V$		0.7		V	
Dynamic ^b							
Total Gate Charge	Qg	Ver 15 V Ver 45 V		16		nC	
Gate-Source Charge	Qgs	$V_{DS} = 15 V$, $V_{GS} = 4.5 V$, $I_D = 10 A$		5			
Gate-Drain Charge	Qgd	ID = 10 A		6			
Turn-On Delay Time	t _{d(on)}			5			
Rise Time	tr	V_{DD} = 15 V, R_L = 6 Ω , ID = 1 A,		4		nS	
Turn-Off De lay Time	t _{d(off)}	VGEN = 10 V		23			
Fall-Time	tf			9			

Notes


a. Pulse test: PW <= 300us duty cycle <= 2%.


b. Guaranteed by design, not subject to production testing.

Brückewell Bruckewell Technology Corp., Ltd.

http://www.bruckewell-semicon.com/

Package Information •

VIEW 'A' (SCALE 5:1)

SYMBOLS	DIMENSIONS IN MILLIMETERS			DIMENSIONS IN INCHES			
STMBOLS	MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.85	0.95	1.00	0.033	0.037	0.039	
A1	0.00		0.05	0.000		0.002	
b	0.30	0.40	0.50	0.012	0.016	0.020	
с	0.15	0.20	0.25	0.006	0.008	0.010	
D	5.20 BSC		0.205 BSC				
D1	4.35 BSC			0.171 BSC			
E	5.55 BSC			0.219 BSC			
E1	6.05 BSC			0.238 BSC			
E2		3.625 BSC 0.143 BSC					
E3	1.275 BSC			0.050 BSC			
e	1.27 BSC			0.050 BSC			
L	0.45	0.55	0.65	0.018	0.022	0.026	
L1	0		0.15	0		0.006	
L2	0.68 REF			0.027 REF			
θ	0°		10°	0°	· · · · · · ·	10°	