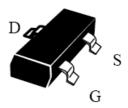
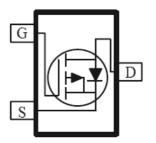


MS60P02NE

P-Channel 60V (D-S) MOSFET


General Description


These miniature surface mount MOSFETs utilize a high cell density trench process to provide low rDS(on) and to ensure minimal power loss and heat dissipation. Typical applications are DC-DC converters and power management in portable and battery-powered products such as computers, printers, PCMCIA cards, cellular and cordless telephones.

FEATURES

- · Low rDS(on) provides higher efficiency and
- · extends battery life
- · Low thermal impedance copper leadframe
- SOT-23 saves board space
- · Fast switching speed
- · High performance trench technology

SOT-23-3L

PRODUCT SUMMARY			
V _{DS} (V)	$\mathbf{r}_{\mathrm{DS(on)}}\left(\Omega\right)$	I _D (A)	
-60	$0.770 @V_{CS} = -10V$	1.6	
	$1.200 @V_{CS} = -4.5V$	1.3	

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS (T _A = 25 °C UNLESS OTHERWISE NOTED)					
Parameter			Maximum	Units	
Drain-Source Voltage		V_{DS}	-60	V	
Gate-Source Voltage		V_{GS}	±20	v	
Continuous Drain Current ^a	$T_A=25^{\circ}C$ $T_A=70^{\circ}C$	T_	1.7		
Continuous Diam Current	$T_A=70^{\circ}C$	1D	1.4	A	
Pulsed Drain Current ^b		I_{DM}	±15		
Continuous Source Current (Diode Conduction) ^a			-1.7	A	
Dames Discination ³	T _A =25°C	D_	1.3	w	
Power Dissipation ^a	$T_A=25$ °C $T_A=70$ °C	ГД	0.8	**	
Operating Junction and Storage Temperature Range		T _J , T _{stg}	-55 to 150	°C	

THERMAL RESISTANCE RATINGS						
Parameter	Symbol	Maximum	Units			
Maximum Junction-to-Ambient ^a	t <= 5 sec	D	100	°C/W		
	Steady-State	R_{THJA}	166			

Notes

- a. Surface Mounted on 1" x 1" FR4 Board.
- b. Pulse width limited by maximum junction temperature

Parameter	Symbol	Test Conditions	Limits			Unit	
Farameter	Symbol	Test Conditions		Тур	Max	Cint	
Static							
Gate-Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}$, $I_{D} = -250 \text{ uA}$	-1.2			V	
Gate-Body Leakage	I_{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$			±100	nA	
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = -48 \text{ V}, V_{GS} = 0 \text{ V}$			-1	uA	
Zero Care vonage Diam Current	-022	$V_{DS} = -48 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 55^{\circ}\text{C}$			-10	uri	
On-State Drain Current ^A	$I_{D(on)}$	$V_{DS} = -5 \text{ V}, V_{GS} = -10 \text{ V}$	-8			A	
Drain-Source On-Resistance ^A		$V_{GS} = -10 \text{ V}, I_D = -1.6 \text{ A}$			770	mΩ	
Drain-Source On-Resistance	f _{DS(on)}	$V_{GS} = -4.5 \text{ V}, I_D = -1.3 \text{ A}$			1200	11122	
Forward Tranconductance ^A	g_{fs}	$V_{DS} = -15 \text{ V}, I_D = -1.6 \text{ A}$		8		S	
Diode Forward Voltage	V_{SD}	$I_S = -2.5 \text{ A}, V_{GS} = 0 \text{ V}$		0.8		V	
Dynamic ^b							
Total Gate Charge	Qg	$V_{DS} = -30 \text{ V}, V_{GS} = -4.5 \text{ V},$		18			
Gate-Source Charge	Q_{gs}	$V_{DS} = -30 \text{ V}, V_{GS} = -4.3 \text{ V},$ $I_{D} = -1.6 \text{ A}$		5		nC	
Gate-Drain Charge	Q_{gd}	ID1.0 A		2			
Turn-On Delay Time	t _{d(on)}			8			
Rise Time	t _r	$\rm V_{DD} = -30~V,~R_L = 30~\Omega~$, $\rm ID = -1~A,$		10		nS	
Turn-Off Delay Time	t _{d(off)}	$VGEN = -10 \text{ V}, RG = 6\Omega$		35		113	
Fall-Time	t _f			12			

Notes

- a. Pulse test: $PW \le 300us duty cycle \le 2\%$.
- b. Guaranteed by design, not subject to production testing.