

MS40N06 60V N-Channel MOSFET

GENERAL DESCRIPTION

The MS40N06 is the highest performance trench N-ch MOSFETs with extreme high cell density , which provide excellent RDSON and gate charge for most of the synchronous buck converter applications . The QM6006M6 meet the RoHS and Green Product requirement , 100% EAS guaranteed with full function reliability approved.

FEATURES

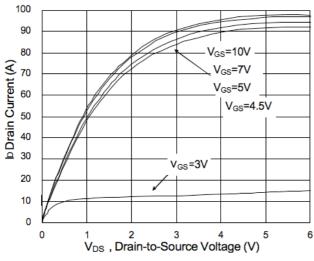
- Advanced high cell density Trench technology
- Super Low Gate Charge
- Excellent CdV/dt effect decline
- 100% EAS Guaranteed
- Green Device Available

RoHS COMPLIANT

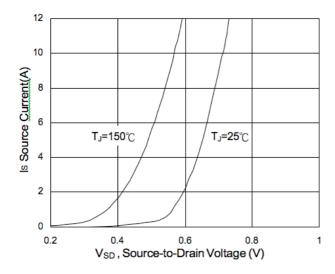
HALOGEN FREE Avaliable

Symbol	Parameter	Rating		Units
VDS	Drain-Source Voltage	60	v	
VGS	Gate-Source Voltage	±20	v	
ID@TC=25°C	Continuous Drain Current, VGS @ 10V ¹	40		А
ID@TC=100°C	Continuous Drain Current, VGS @ 10V ¹	25		А
ID@TA=25°C	Continuous Drain Current, VGS @ 10V ¹	7.4		А
ID@TA=70°C	Continuous Drain Current, VGS @ 10V ¹	6		А
IDM	Pulsed Drain Current ²	80		А
EAS	Single Pulse Avalanche Energy ³	67		m
LA3	Single Fuise Avalanche Energy			J
IAS	Avalanche Current	28		А
PD@TC=25°C	Total Power Dissipation ⁴	59		w
PD@TA=25°C	Total Power Dissipation ⁴	2		w
TSTG	Storage Temperature Range	-55 to 150		°C
TJ	Operating Junction Temperature Range	-55 to 150		°C
Symbol	Parameter	Тур.	Max.	Unit
Reja	Thermal Resistance Junction-Ambient ¹		62	°C/W
Rejc	Thermal Resistance Junction-Case ¹		2.1	°C/W

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BVDSS	Drain-Source Breakdown Voltage	VGS=0V , ID=250uA	60			V
△BVDSS/△TJ	BVDSS Temperature Coefficient	Reference to 25°C, ID=1mA		0.057		V/°C
RDS(ON)	Static Drain-Source On-Resistance ²	VGS=10V , ID=30A		14	18	mΩ
		VGS=4.5V , ID=15A		16	20	
VGS(th)	Gate Threshold Voltage	VGS=VDS , ID =250uA	1.2		2.5	V
△VGS(th)	VGS(th) Temperature Coefficient			-5.68		mV/°C
IDSS	Drain-Source Leakage Current	VDS=48V, VGS=0V, TJ=25°C			1	uA
		VDS=48V , VGS=0V , TJ=55°C			5	
IGSS	Gate-Source Leakage Current	VGS=±20V, VDS=0V			±100	nA
gfs	Forward Transconductance	VDS=5V , ID=30A		35.2		S
Rg	Gate Resistance	VDS=0V , VGS=0V , f=1MHz		1.7	3.4	Ω
Qg	Total Gate Charge (4.5V)			19.3	27	nC
Qgs	Gate-Source Charge	VDS=48V , VGS=4.5V , ID=15A		7.1	10	
Qgd	Gate-Drain Charge			7.6	10.6	
Td(on)	Turn-On Delay Time			7.2	14.4	
Tr	Rise Time	VDD=30V , VGS=10V ,		50	90	ns
Td(off)	Turn-Off Delay Time	RG=3.3Ω, ID=15A		36.4	73	
Tf	Fall Time			7.6	15.2	
Ciss	Input Capacitance			2423	3392	
Coss	Output Capacitance	VDS=15V , VGS=0V , f=1MHz		145	203	pF
Crss	Reverse Transfer Capacitance			97	136	
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
EAS	Single Pulse Avalanche Energy ⁵	VDD=25V , L=0.1mH , IAS=15A	19			mJ
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit


IS	Continuous Source Current ^{1,6}	VG=VD=0V , Force Current	 	40	А
ISM	Pulsed Source Current ^{2,6}		 	80	А
VSD	Diode Forward Voltage ²	VGS=0V , IS=A , TJ=25°C	 	1	V
trr	Reverse Recovery Time	IF=15A , dl/dt=100A/µs , TJ=25°C	 16.3		nS
Qrr	Reverse Recovery Charge		 11		nC

Note :


- 1. The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.
- 2. The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%
- The EAS data shows Max. rating . The test condition is VDD=25V,VGS=10V,L=0.1mH,IAS=28A
 The power dissipation is limited by 150°C junction temperature
- 5. The Min. value is 100% EAS tested guarantee.
- The data is theoretically the same as ID and IDM , in real applications , should be limited by total power dissipation.

Characteristic Curves

Figure 1. Typical Output Characteristics

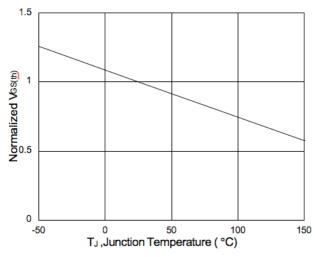


Figure 5. Normalized VGS(th) v.s TJ

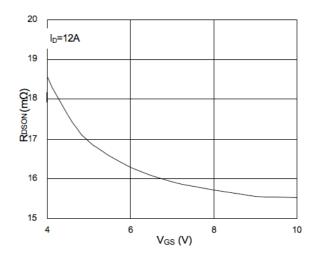


Figure 2. On-Resistance v.s **Gate-Source**

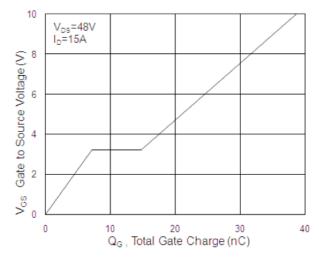


Figure 4. Gate-Charge Characteristics

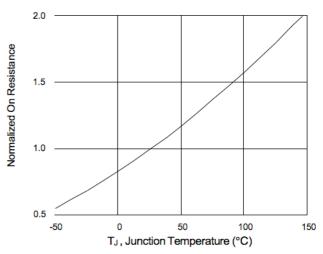


Figure 6. Normalized RDSON v.s TJ

MS40N06 60V N-Channel MOSFET

Characteristic Curves

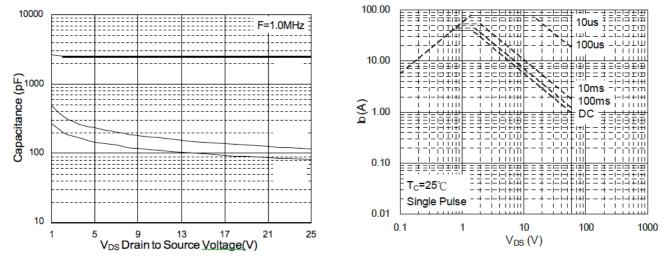


Figure 7. Capacitance

Figure 8. Safe Operating Area

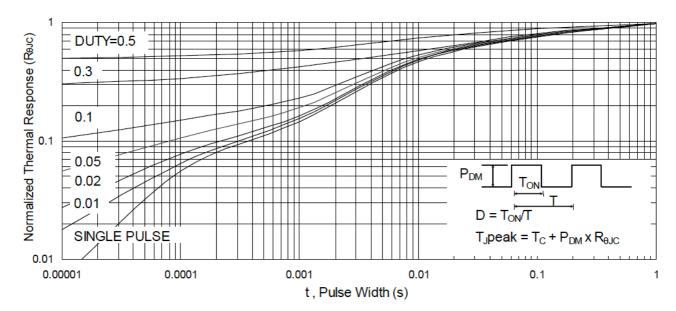
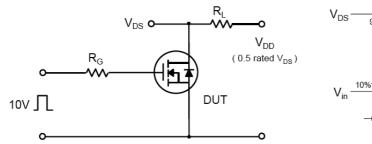



Figure 9. Normalized Maximum Transient Thermal Impedance

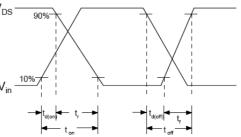
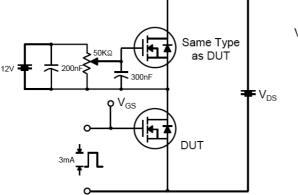
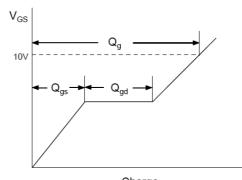




Fig 10. Resistive Switching Test Circuit & Waveforms

MS40N06 60V N-Channel MOSFET

Charge

Fig 11. Gate Charge Test Circuit & Waveform

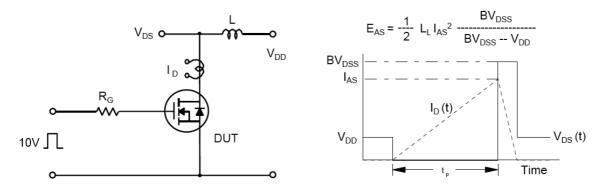
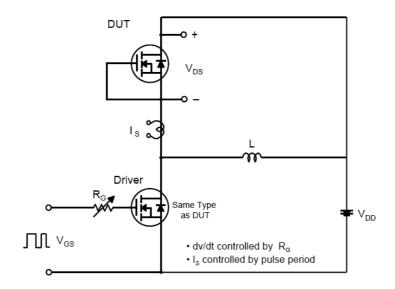
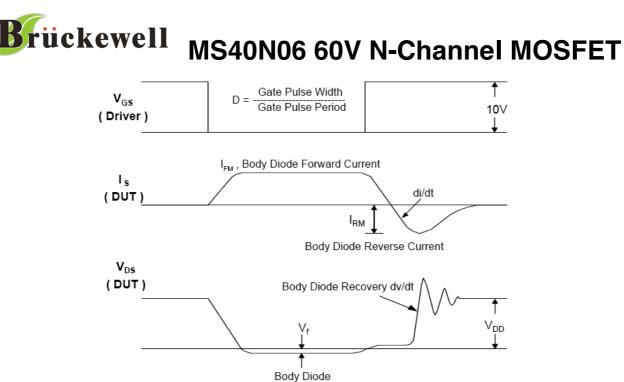




Fig 12. Unclamped Inductive Switching Test Circuit & Waveforms

Forward Voltage Drop

Fig 131. Peak Diode Recovery dv/dt Test Circuit & Waveforms

Legal Disclaimer Notice

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Bruckewell Technology Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Bruckewell"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Bruckewell makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Bruckewell disclaims

Any and all liability arising out of the application or use of any product. (i)

(ii) Any and all liability, including without limitation special, consequential or incidental damages.

(iii) Any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Bruckewell's knowledge of typical requirements that are often placed on Bruckewell products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time.

Product specifications do not expand or otherwise modify Bruckewell's terms and conditions of purchase, including but not limited to the warranty expressed therein.