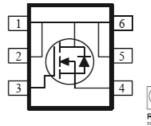


MS34N34 Dual N-Channel 20-V (D-S) MOSFET

Key Features:


These miniature surface mount MOSFETs

Utilize High Cell Density process. Low rDS(on) assures minimal power loss and conserves energy, making this device ideal for use in power management circuitry.

Typical applications are DC-DC converters, power management in portable and battery-powered products such as computers, printers, PCMCIA cards, and cellular and cordless telephones.

- Low rDS(on) provides higher efficiency and extends battery life
- Low thermal impedance copper lead frame TSOP-6 saves board space
- · Fast switching speed
- · High performance trench technology

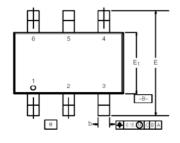
TSOP-6 Package

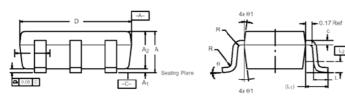
ABSOLUTE MAXIMUM RATINGS (T _A = 25 °C UNLESS OTHERWISE NOTED)						
Parameter	Symbol	Maximum	Units			
Drain-Source Voltage			30	V		
Gate-Source Voltage			±12			
T _A :		т_	6.0			
Continuous Drain Current ^a	$T_A=25$ °C $T_A=70$ °C	1D	4.6	A		
Pulsed Drain Current ^b	I_{DM}	±20				
Continuous Source Current (Diode Conduction) ^a	I_S	1.6	A			
Danier dina	$T_A=25$ °C	D	2.0	w		
Power Dissipation ^a	$T_A=25$ °C $T_A=70$ °C	гD	1.3	**		
Operating Junction and Storage Temperature Range	-	T _J , T _{stg}	-55 to 150	°C		

THERMAL RESISTANCE RATINGS						
Parameter		Symbol	Maximum	Units		
Maximum Junction-to-Ambient ^a	t <= 5 sec	D	62.5	°C/W		
Maximum Junction-to-Ambient	Steady-State	R_{THJA}	110			

Notes

- a. Surface Mounted on 1" x 1" FR4 Board.
- b. Pulse width limited by maximum junction temperature




SPECIFICATIONS (T _A = 25°C UNLESS OTHERWISE NOTED)							
Parameter -	Crawbol	Test Conditions	Limits			Unit	
Fataireter	Symbol	Symbol Test Conditions		Тур	Max	CIM	
Static							
Gate-Threshold Voltage	VGS(th)	Vbs=Vbs, Ib=250uA	0.7		1.5	V	
Gate-Body Leakage	IGSS	V _{DS} =0 V, V _{GS} =±8 V			±100	nA	
Zero Gate Voltage Drain Current	Ipss	$V_{DS} = 24 \text{ V}, V_{DS} = 0 \text{ V}$			1	A	
	IDSS	$V_{DS} = 24 \text{ V}, V_{GS} = 0 \text{ V}, T_J = 55^{\circ}\text{C}$			10	uA	
On-State Drain Current ^A	ID(on)	Vbs=5 V, Vss=4.5 V	10			A	
A	(DS()	$V_{68} = 4.5 \text{ V, In} = 6.0 \text{ A}$			32 mΩ		
Drain-Source On-Resistance ^A	IDS(on)	$V_{6}s = 2.5 \text{ V, In} = 5.0 \text{ A}$			44	1112	
Forward Tranconductance ^A	g£	$V_{DS} = 10 \text{ V, In} = 4.0 \text{ A}$		11.3		S	
Diode Forward Voltage	Všd	$I_S = 1.6 A$, $V_{GS} = 0 V$		0.75		V	
Dynamic ^b							
Total Gate Charge	Qg			6.0			
Gate-Source Charge	Q_{e_5}	$V_{DS} = 10 \text{ V}, V_{GS} = 4.5 \text{ V}, I_D = 4.0 \text{ A}$		1.0		пC	
Gate-Drain Charge	Qgd			1.5			
Tum-On Delay Time	t _{d(on)}			8			
Rise Time	tr	$V_{DD} = 10 \text{ V}, R_L = 15 \Omega, I_D = 1 \text{ A},$		24			
Tum-Off Delay Time	ne td(off) VGEN=4.5 V			35		ns	
Fall-Time	t£			10			

Notes

- a. Pulse test: PW <= 300us duty cycle <= 2%.
- b. Guaranteed by design, not subject to production testing.

Package Dimensions

	MILLIMETERS			INCHES			
Dim	Min	Nom	Max	Min	Nom	Max	
Α	0.91	-	1.10	0.036	-	0.043	
A ₁	0.01	= -	0.10	0.0004	-	0.004	
A ₂	0.84	-	1.00	0.033	0.038	0.039	
b	0.30	0.32	0.45	0.012	0.013	0.018	
С	0.10	0.15	0.20	0.004	0.006	0.008	
D	2.95	3.05	3.10	0.116	0.120	0.122	
Е	2.70	2.85	2.98	0.106	0.112	0.117	
E ₁	1.55	1.65	1.70	0.061	0.065	0.067	
е	1.00 BSC			0.0394 BSC			
L	0.35	-	0.50	0.014	-	0.020	
L ₁	0.60 Ref			0.024 Ref			
L ₂	0.25 BSC			0.010 BSC			
R	0.10	-	-	0.004	-	-	
θ	0°	4°	8°	0°	4°	8°	
θ1	7° Nom			7° Nom			