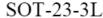
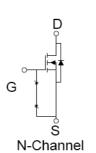


MS20N04NE N-Channel 20V (D-S) MOSFET


General Description


These miniature surface mount MOSFETs utilize High Cell Density process. Low rDS(on) assures minimal power loss and conserves energy, making this device ideal for use in power management circuitry. Typical applications are PWMDC-DC converters, power management in portable and battery-powered products such as computers, printers, battery charger, telecommunication power system, and telephones power system.


FEATURES

- Low rDS(on) Provides Higher Efficiency and
- · Extends Battery Life
- Miniature SOT-23 Surface Mount Package
- · Saves Board Space
- · High power and current handling capability
- · Low side high current DC-DC Converter
- Applications

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

MOSFET

ABSOLUTE MAXIMUM RATINGS (T _A = 25 °C UNLESS OTHERWISE NOTED)								
Parameter			Maximum	Units				
Drain-Source Voltage			20	V				
Gate-Source Voltage			±12					
Continuous Drain Current ^a	T _A =25°C	.T.,	4.0					
	$T_A=25$ °C $T_A=70$ °C	ъ	3.1	A				
Pulsed Drain Current ^b			±20					
Continuous Source Current (Diode Conduction) ^a			1.6	A				
Power Dissipation ^a	T _A =25°C	D_	1.3	w				
	$T_A=25$ °C $T_A=70$ °C	L D	0.8	VV				
Operating Junction and Storage Temperature Range		T_{J}, T_{stg}	-55 to 150	°C				

THERMAL RESISTANCE RATINGS								
Parameter		Symbol	Maximum	Units				
Maximum Junction-to-Ambient ^a	t <= 5 sec	D	100	°C/W				
	Steady-State	R_{THJA}	166					

Notes

- a. Surface Mounted on 1" x 1" FR4 Board.
- b. Pulse width limited by maximum junction temperature

SPECIFICATIONS (T _A = 25°C UNLESS OTHERWISE NOTED)								
Parameter	Symbol	Test Conditions	Limits			Unit		
		1 est Conditions	Min	Тур	Max	· Unit		
Static						-		
Gate-Threshold Voltage	$V_{\text{GS(th)}}$	$V_{DS} = V_{GS}, I_{D} = 250 \text{ uA}$	0.7			V		
Gate-Body Leakage	I_{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 8 \text{ V}$			±100	пA		
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = 16 \text{ V}, V_{GS} = 0 \text{ V}$			1	uA		
	-D22	$V_{DS} = 16 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 55^{\circ}\text{C}$			10			
On-State Drain Current ^A	$I_{D(on)}$	$V_{DS} = 5 \text{ V}, V_{GS} = 4.5 \text{ V}$	10			Α		
Drain-Source On-Resistance ^A	f _{DS(on)}	$V_{GS} = 4.5 \text{ V}, I_D = 4.6 \text{ A}$			32	mΩ		
		$V_{GS} = 2.5 \text{ V}, I_D = 3.9 \text{ A}$			44			
Forward Tranconductance ^A	g_{fs}	$V_{DS} = 10 \text{ V}, I_{D} = 4.0 \text{ A}$		11.3		S		
Diode Forward Voltage	V_{SD}	$I_S = 1.6 \text{ A}, V_{GS} = 0 \text{ V}$		0.75		V		
Dynamic ^b	•							
Total Gate Charge	Qg			13.4				
Gate-Source Charge	Q_{gs}	$V_{DS} = 10 \text{ V}, V_{GS} = 4.5 \text{ V}, I_{D} = 4.0 \text{ A}$		0.9		пC		
Gate-Drain Charge	Q_{gd}			2.0				
Turn-On Delay Time	t _{d(on)}			8				
Rise Time	t _r	$V_{DD} = 10 \text{ V}, R_L = 15 \Omega, I_D = 1 \text{ A},$		24		I		
Turn-Off Delay Time	$t_{d(off)}$	$V_{GEN} = 4.5 \text{ V}$		35		ns		
Fall-Time	t _f			10		Ī		
Source-Ddrain Reverse Recovery Time	t _{rr}	$I_F = 1.6 \text{ A}, \text{ di/dt} = 100 \text{ A/uS}$		40				

Notes

- a. Pulse test: PW \leq 300us duty cycle \leq 2%.
- b. Guaranteed by design, not subject to production testing.