


## P-Channel 20-V (D-S) MOSFET

These miniature surface mount MOSFETs utilize a high cell density trench process to provide low  $r_{DS(on)}$  and to ensure minimal power loss and heat dissipation. Typical applications are DC-DC converters and power management in portable and battery-powered products such as computers, printers, PCMCIA cards, cellular and cordless telephones.

- Low r<sub>DS(on)</sub> provides higher efficiency and extends battery life
- Low thermal impedance copper leadframe SC70-6 saves board space
- Fast switching speed
- High performance trench technology

| PRODUCT SUMMARY     |                           |                    |  |
|---------------------|---------------------------|--------------------|--|
| V <sub>DS</sub> (V) | r <sub>DS(on)</sub> (OHM) | I <sub>D</sub> (A) |  |
|                     | $0.079 @ V_{GS} = -4.5V$  | -3.7               |  |
| -20                 | $0.110 @ V_{GS} = -2.5V$  | -3.1               |  |
|                     | $0.160 @ V_{GS} = -1.8V$  | -2.6               |  |



| ABSOLUTE MAXIMUM RATINGS ( $T_A = 25$ °C UNLESS OTHERWISE NOTED) |                                              |                 |            |       |  |
|------------------------------------------------------------------|----------------------------------------------|-----------------|------------|-------|--|
| Parameter                                                        |                                              |                 | Maximum    | Units |  |
| Drain-Source Voltage                                             |                                              | V <sub>DS</sub> | -20        | V     |  |
| Gate-Source Voltage                                              |                                              | V <sub>GS</sub> | ±8         | v     |  |
| Continuous Drain Current <sup>a</sup>                            | $T_A=25^{\circ}C$                            | T               | -3.7       |       |  |
|                                                                  | $T_A=25^{\circ}C$<br>$T_A=70^{\circ}C$       | ъD              | -3.0       | А     |  |
| Pulsed Drain Current <sup>b</sup>                                |                                              | IDM             | -10        |       |  |
| Continuous Source Current (Diode Conduction) <sup>a</sup>        |                                              | Is              | ±1.4       | Α     |  |
|                                                                  | T <sub>A</sub> =25°C                         | D               | 1.56       | W     |  |
| Power Dissipation <sup>a</sup>                                   | T <sub>A</sub> =25°C<br>T <sub>A</sub> =70°C | гD              | 0.81       | ,,    |  |
| Operating Junction and Storage Temperature Range                 |                                              | TJ, Tstg        | -55 to 150 | °C    |  |

| THERMAL RESISTANCE RATINGS               |                |                   |         |       |  |  |
|------------------------------------------|----------------|-------------------|---------|-------|--|--|
| Parameter                                |                | Symbol            | Maximum | Units |  |  |
|                                          | $t \ll 5 \sec$ | D                 | 80      | 0000  |  |  |
| Maximum Junction-to-Ambient <sup>a</sup> | Steady-State   | R <sub>THJA</sub> | 125     | Ow.   |  |  |

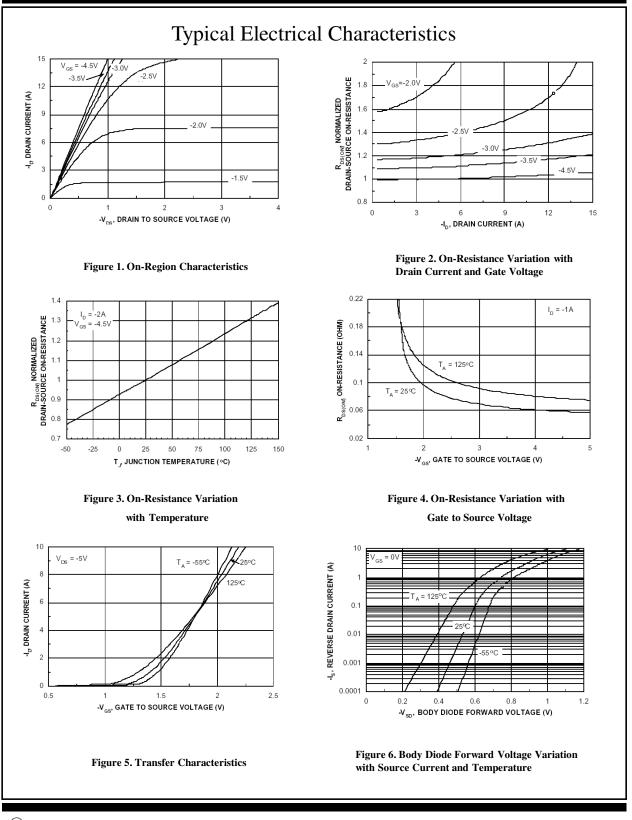
Notes

a. Surface Mounted on 1" x 1" FR4 Board.

b. Pulse width limited by maximum junction temperature

## MS14P21

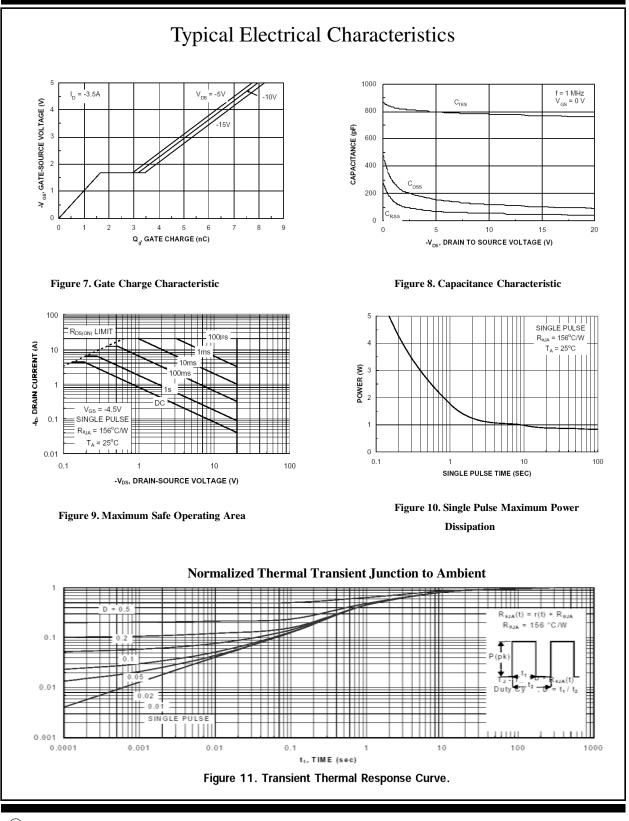



| Parameter                               | Symbol                     | Test Conditions                                                              | Limits |       |      | Unit |  |
|-----------------------------------------|----------------------------|------------------------------------------------------------------------------|--------|-------|------|------|--|
| r ar anneter                            | Symbol                     | Test Conditions                                                              |        |       |      |      |  |
| Static                                  |                            |                                                                              |        |       |      |      |  |
|                                         | GS(th)                     | $V_{DS} = V_{GS}, I_D = -250 \text{ uA}$                                     | -0.4   |       |      | V    |  |
| Gate-Body Leakage                       | I <sub>GSS</sub>           | $V_{DS} = 0 V, V_{GS} = \pm 8 V$                                             |        |       | ±100 | nA   |  |
| Zero Gate Voltage Drain Current         | I <sub>DSS</sub>           | $V_{DS} = -16 V, V_{GS} = 0 V$                                               |        |       | -1   | uA   |  |
|                                         |                            | $V_{DS} = -16 \text{ V}, V_{GS} = 0 \text{ V}, T_J = 55^{\circ}\text{C}$     |        |       | -10  |      |  |
| On-State Drain Current <sup>A</sup>     | I <sub>D(on)</sub>         | $V_{DS} = -5 V, V_{GS} = -4.5 V$                                             | -5     |       |      | Α    |  |
|                                         |                            | $V_{GS} = -4.5 \text{ V}, I_D = -3.7 \text{ A}$                              |        |       | 79   | mΩ   |  |
| Drain-Source On-Resistance <sup>A</sup> | r <sub>DS(on)</sub>        | $V_{GS} = -2.5 \text{ V}, I_D = -3.1 \text{ A}$                              |        |       | 110  |      |  |
|                                         |                            | $V_{GS} = -1.8 \text{ V}, I_D = -2.6 \text{ A}$                              |        |       | 160  |      |  |
| Forward Tranconductance <sup>A</sup>    | $\mathbf{g}_{\mathrm{fs}}$ | $V_{DS} = -5 \text{ V}, \text{ I}_{D} = -1.25 \text{ A}$                     |        | 9     |      | S    |  |
| Diode Forward Voltage                   | V <sub>SD</sub>            | $I_{S} = -0.46 \text{ A}, V_{GS} = 0 \text{ V}$                              |        | -0.65 |      | V    |  |
| Dynamic <sup>b</sup>                    |                            |                                                                              |        |       |      |      |  |
| Total Gate Charge                       | $Q_{g}$                    | $V_{DS} = -10 \text{ V}, V_{GS} = -4.5 \text{ V},$                           |        | 7.2   |      | nC   |  |
| Gate-Source Charge                      | Q <sub>gs</sub>            | $v_{\rm DS} = -10  v,  v_{\rm GS} = -4.3  v,$<br>$I_{\rm D} = -3.7  {\rm A}$ |        | 1.7   |      |      |  |
| Gate-Drain Charge                       | $Q_{gd}$                   | $I_{\rm D} = -3.7$ A                                                         |        | 1.5   |      |      |  |
| Turn-On Delay Time                      | t <sub>d(on)</sub>         |                                                                              |        | 10    |      |      |  |
| Rise Time                               | t <sub>r</sub>             | $V_{DD} = -10 \text{ V}, \text{ I}_{L} = -1 \text{ A},$                      |        | 9     |      | ns   |  |
| Turn-Off Delay Time                     | t <sub>d(off)</sub>        | $V_{GEN}$ = -4.5 V, $R_G$ = 6 $\Omega$                                       |        | 27    |      |      |  |
| Fall-Time                               | t <sub>f</sub>             |                                                                              |        | 11    |      |      |  |

Notes

- a. Pulse test: PW <= 300us duty cycle <= 2%.
- b. Guaranteed by design, not subject to production testing.
- c. Repetitive rating, pulse width limited by junction temperature.

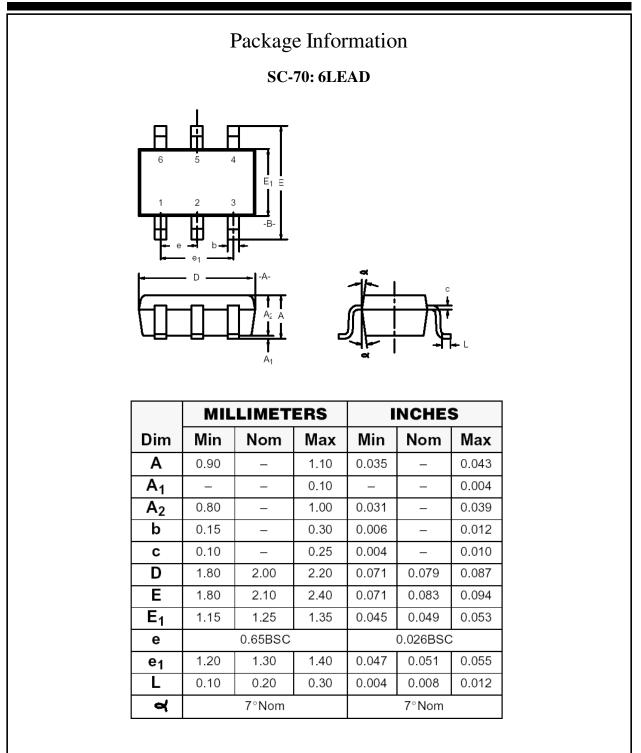



**MS14P21** 



© PRELIMINARY




## **MS14P21**



Publication Order Number: D



**MS14P21** 

