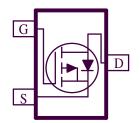

P-Channel 20-V (D-S) MOSFET


These miniature surface mount MOSFETs utilize a high cell density trench process to provide low $r_{DS(on)}$ and to ensure minimal power loss and heat dissipation. Typical applications are DC-DC converters and power management in portable and battery-powered products such as computers, printers, PCMCIA cards, cellular and cordless telephones.

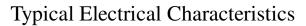
L	$V_{DS}(V)$	$r_{DS(on)}$ (OHM)	$I_{D}(A)$
	-20	$0.079 @ V_{GS} = -4.5V$	-2.1
		$0.110 @ V_{GS} = -2.5V$	-1.8

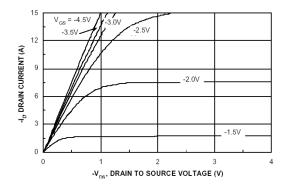
PRODUCT SUMMARY

- Low r_{DS(on)} provides higher efficiency and extends battery life
- Low thermal impedance copper leadframe SC70-3 saves board space
- Fast switching speed
- High performance trench technology

ABSOLUTE MAXIMUM RATINGS (T _A = 25 °C UNLESS OTHERWISE NOTED)						
Parameter		Symbol	Maximum	Units		
Drain-Source Voltage			-20	V		
Gate-Source Voltage		V_{GS}	±8	v		
Continuous Drain Current ^a	$T_A=25^{\circ}C$	т_	-2.1			
Continuous Drain Current	$T_A=25^{\circ}C$ $T_A=70^{\circ}C$	ъ	-1.7	A		
Pulsed Drain Current ^b		I_{DM}	-2.5			
Continuous Source Current (Diode Conduction) ^a		I_S	±0.28	A		
D	$T_A=25^{\circ}C$	D_	0.5	W		
Power Dissipation ^a	$T_A=25^{\circ}C$ $T_A=70^{\circ}C$	FD	0.3	٧٧		
Operating Junction and Storage Temperature Range		T_J, T_{stg}	-55 to 150	°C		

THERMAL RESISTANCE RATINGS						
Parameter	Symbol	Maximum	Units			
N	$t \le 5 \sec$	R_{THJA}	375	°C/W		
Maximum Junction-to-Ambient ^a	Steady-State		430			


Notes


- a. Surface Mounted on 1" x 1" FR4 Board.
- b. Pulse width limited by maximum junction temperature

SPECIFICATIONS ($T_A = 25^{\circ}$ C	UNLESS O	THERWISE NOTED)					
Parameter	Symbol	Symbol Test Conditions	Limits			Unit	
i ai ametei	Symbol	Symbol Test Conditions		Тур	Max	Omt	
Static							
Gate-Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}$, $I_D = -250 \text{ uA}$	-0.4			V	
Gate-Body Leakage	I_{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 8 \text{ V}$			±100	nA	
Zara Gata Valtaga Drain Current	I _{DSS}	$V_{DS} = -16 \text{ V}, V_{GS} = 0 \text{ V}$			-1	uA	
Zero Gate Voltage Drain Current	1DSS	$V_{DS} = -16 \text{ V}, V_{GS} = 0 \text{ V}, T_J = 55^{\circ}\text{C}$	°C -10	uA			
On-State Drain Current ^A	$I_{D(on)}$	$V_{DS} = -5 \text{ V}, V_{GS} = -4.5 \text{ V}$	-5			A	
Dunin Course On Braintan and		$V_{GS} = -4.5 \text{ V}, I_{D} = -1.7 \text{ A}$		79	m⊠		
Drain-Source On-Resistance ^A	r _{DS(on)}	$V_{GS} = -2.5 \text{ V}, I_D = -1.5 \text{ A}$			110	шМ	
Forward Tranconductance ^A	$g_{ m fs}$	$V_{DS} = -5 \text{ V}, I_{D} = -1.25 \text{ A}$		9		S	
Diode Forward Voltage	V_{SD}	$I_S = -0.46 \text{ A}, V_{GS} = 0 \text{ V}$		-0.65		V	
Dynamic ^b							
Total Gate Charge	Q_{g}	$V_{DS} = -10 \text{ V}, V_{GS} = -4.5 \text{ V},$		7.2			
Gate-Source Charge	Q_{gs}	$V_{DS} = -10 \text{ V}, V_{GS} = -4.5 \text{ V},$ $I_{D} = -1.7 \text{ A}$		1.7		пC	
Gate-Drain Charge	Q_{gd}	$I_{\rm D}$ – -1.7 A		1.5			
Turn-On Delay Time	$t_{d(on)}$			10			
Rise Time	t _r	$V_{DD} = -10 \text{ V}, I_{L} = -1 \text{ A},$		9		, ne	
Turn-Off Delay Time	$t_{d(off)}$	$V_{GEN} = -4.5 \text{ V}, R_G = 6 $		27		ns	
Fall-Time	t_{f}			11			

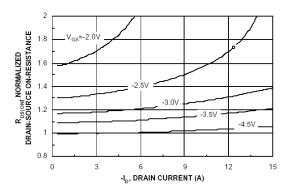
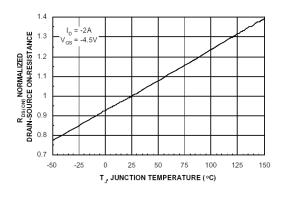



Figure 1. On-Region Characteristics

Figure 2. On-Resistance Variation with Drain Current and Gate Voltage

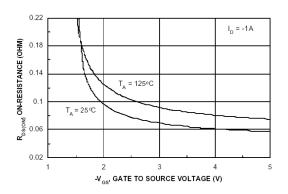
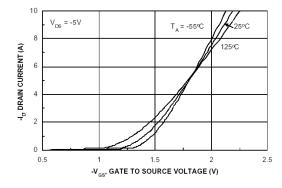



Figure 3. On-Resistance Variation with Temperature

Figure 4. On-Resistance Variation with Gate to Source Voltage

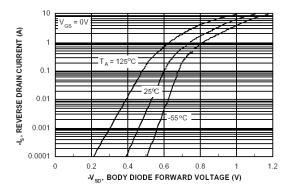
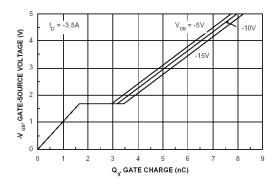



Figure 5. Transfer Characteristics

Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature

Typical Electrical Characteristics

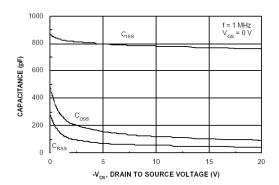


Figure 7. Gate Charge Characteristic

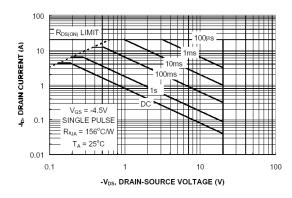


Figure 8. Capacitance Characteristic

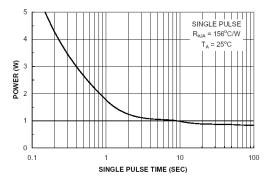


Figure 9. Maximum Safe Operating Area

Figure 10. Single Pulse Maximum Power
Dissipation

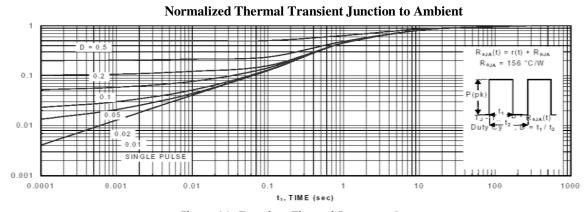
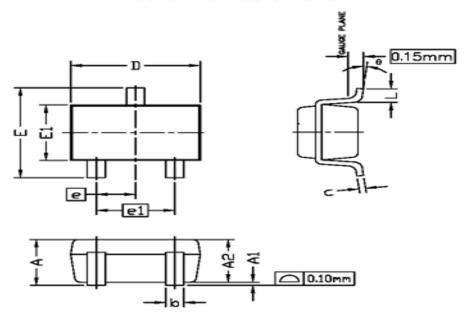
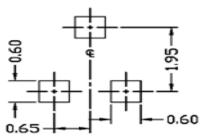



Figure 11. Transient Thermal Response Curve.



Package Information

SC70 PACKAGE OUTLINE

RECOMMENDED LAND PATTERN

TYMBOLS	DIMENS	RONS IN MILLE	METERS	DIM	ENSIONS IN DR	
01MB0L2	MIN	NOM	MAX	MIN	NOM	MAX
Α			1.10			0.043
A1	0.00		0.10	0.00		0.004
A2	0.7	0.9	1.00	0.028	0.035	0.039
ь	0.15		0.30	0.006		0.012
c	0.08		0.22	0.003		0.009
D	1.85	2,10	2,15	0.073	0.083	0.085
E	1.80	2.30	2,40	0.071	0.091	0.094
	0.65 BSC			0.026 BSC		
el	1.30 BSC				0.051 BSC	
E1	1.1	1.30	1.4	0.043	0.051	0.055
L	0.26	0.36	0.46	0.010	0.014	0.018
θ	0°	4°	8°	O°	4°	8°

UNIT: mm

NOTE

- 1. ALL DIMENSIONS ARE IN MILLMETERS.
- 2. DIMENSIONS ARE INCLUSIVE OF PLATING.
- PACKAGE BODY SIZES EXCLUDE MOLD FLASH AND GATE BURRS.
 MOLD FLASH AT THE NON-LEAD SIDES SHOULD BE LESS THAN 3 MILS EACH.
- DIE IS FACING UP FOR MOLD AND FACING DOWN FOR TRIM/FORM. ie: REVERSE TRIM/FORM.
- 5. DIMENSION L IS MEASURED IN GAUGE PLANE,
- CONTROLLING DIMENSION IS MILLIMETER.
- CONVERTED INCH DIMENSIONS ARE NOT NECESSARILY EXACT.

© PRELIMINARY

Publication Order Number: