

MINI SURFACE MOUNT GLASS PASSIVATED SINGLE-PHASE FAST RECOVERY BRIDGE RECTIFIER

VOLTAGE 100 to 1000Volts | CURRENT | 0.5 Amperes

FEATURES

- Plastic material used carries Underwriters Laboratory recognition 94V-O
- Low leakage
- Surge overload rating--30 amperes peak
- Ideal for printed circuit board
- Exceeds environmental standards of MIL-S-19500
- Lead free in comply with EU RoHS 2002/95/EC directives

MECHANICAL DATA

- Case: Reliable low cost construction utilizing molded plastic technique results in inexpensive product
- Terminals: Lead solderable per MIL-STD-750, Method 2026
- Polarity: Polarity symbols molded or marking on body
- Mounting Position: Any
- Weight: 0.0044 ounce, 0.1268 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Single phase, half wave, 60Hz, Resistive or inductive load. For capacitive load, derate current by 20%

SYMBOL	R1S	R2S	R4S	R6S	R8S	R10S	UNITS
V _{RRM}	100	200	400	600	800	1000	V
V _{RMS}	70	140	280	420	560	700	V
V _{DC}	100	200	400	600	800	1000	V
I _{F(AV)}	0.5 0.8*						А
I _{FSM}		А					
l² t		A²t					
V _F	1.15						V
I _R	5.0 500						μА
C J	25						pF
t _{rr}		150		250	5	00	ns
R _{eja} R _{ejl}	85 20					°C / W	
T _J , T _{STG}	-55 to + 150					°C	
	$\begin{array}{c} V_{RRM} \\ V_{RMS} \\ V_{DC} \\ \\ I_{F(AV)} \\ \\ I_{FSM} \\ \\ I^2t \\ \\ V_F \\ \\ I_R \\ \\ C_J \\ \\ t_{rr} \\ \\ R_{\theta JA} \\ R_{\theta JL} \\ \\ \end{array}$	V _{RRM} 100 V _{RMS} 70 V _{DC} 100 I _{F(AV)} I _{FSM} I ² t V _F I _R C _J t _{rr} R _{0JA} R _{0JL}	V _{RRM} 100 200 V _{RMS} 70 140 V _{DC} 100 200 I _{F(AV)} I _{FSM} I ² t V _F I _R C _J t _{rr} 150 R _{θJA} R _{θJL}	V _{RRM} 100 200 400 V _{RMS} 70 140 280 V _{DC} 100 200 400 I _{F(AV)} 0 0 I _{FSM} 3 3 I ² t 3.7 0 I _R 5 0 C _J 2 0 t _{rr} 150 0 R _{eJA} R _{eJL} 2 0 R _{eJA} R _{eJL} 2 0	V _{RRM} 100 200 400 600 V _{RMS} 70 140 280 420 V _{DC} 100 200 400 600 I _{F(AV)} 0.5 0.8* I _{FSM} 30 30 I ² t 3.735 1.15 I _R 5.0 500 C _J 25 t _{rr} 150 250 R _{eJA} R _{eJL} 85 20	V _{RRM} 100 200 400 600 800 V _{RMS} 70 140 280 420 560 V _{DC} 100 200 400 600 800 I _{F(AV)} 0.5 0.8* I _{FSM} 30 30 I ² t 3.735 3.735 V _F 1.15 5.0 I _R 500 500 C _J 25 50 R _{eJA} R _{eJL} 85 20 20	V _{RRM} 100 200 400 600 800 1000 V _{RMS} 70 140 280 420 560 700 V _{DC} 100 200 400 600 800 1000 I _{F(AV)} 0.5 0.8* I _{FSM} 30 3.735 V _F 1.15 1.15 I _R 5.0 500 C _J 25 500 R _{eJA} R _{eJL} 250 500

NOTES:

- 1. Measured at 1.0 MHz and applied reverse voltage of 4.0 Volts
- 2. Thermal resistance from junction to ambient and from junction to lead mounted on P.C.B. with 0.5 X 0.5"(13 X 13mm) copper pads
- 3. *R-load on alumina subtrate
- 4. Reverse Recovery Test Conditions : I_F=0.5A,I_R=1A,Irr=0.25A

RATING AND CHARACTERISTIC CURVES

Fig. 1 MAXIMUM NON-REPETITIVE SURGE CURRENT

Fig.2 DERATING CURVE FOR OUTPUT RECTIFIED CURRENT

Fig.4 TYPICAL REVERSE CHARACTERISTICS

MOUNTING PAD LAYOUT

ORDERINFORMATION

• Packing information

T/R - 3K per 13" plastic Reel

Part No_packing code_Version

R1S_R2_00001 R1S_R2_10001

For example : RB500V-40_R2_00001 Part No. Serial number Version code means HF Packing size code means 13" Packing type means T/R

Packing Code XX				Version Code XXXXX			
Packing type	1 st Code	Packing size code	2 nd Code	HF or RoHS	1 st Code	2 nd ~5 th Code	
Tape and Ammunition Box (T/B)	A	N/A	0	HF	0	serial number	
Tape and Reel (T/R)	R	7"	1	RoHS	1	serial number	
Bulk Packing (B/P)	В	13"	2				
Tube Packing (T/P)	Т	26mm	X				
Tape and Reel (Right Oriented) (TRR)	S	52mm	Y				
Tape and Reel (Left Oriented) (TRL)	L	PANASERT T/B CATHODE UP (PBCU)	U				
FORMING	F	PANASERT T/B CATHODE DOWN (PBCD)	D				

Disclaimer

- Reproducing and modifying information of the document is prohibited without permission from Panjit International Inc..
- Panjit International Inc. reserves the rights to make changes of the content herein the document anytime without notification. Please refer to our website for the latest document.
- Panjit International Inc. disclaims any and all liability arising out of the application or use of any product including damages incidentally and consequentially occurred.
- Panjit International Inc. does not assume any and all implied warranties, including warranties
 of fitness for particular purpose, non-infringement and merchantability.
- Applications shown on the herein document are examples of standard use and operation.
 Customers are responsible in comprehending the suitable use in particular applications.
 Panjit International Inc. makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.
- The products shown herein are not designed and authorized for equipments requiring high level of reliability or relating to human life and for any applications concerning life-saving or life-sustaining, such as medical instruments, transportation equipment, aerospace machinery et cetera. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Panjit International Inc. for any damages resulting from such improper use or sale.