

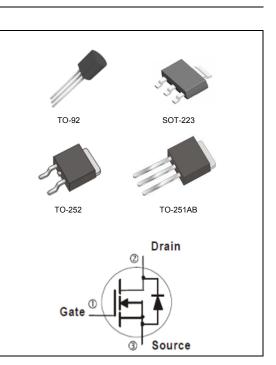
PJN1NA60 / PJW1NA60 / PJU1NA60 / PJD1NA60

Current

1 A

600V N-Channel MOSFET

600 V


Voltage

Features

- R_{DS(ON)}, V_{GS}@10V,I_D@0.5A<14Ω
- High switching speed
- Improved dv/dt capability
- Low Gate Charge
- Low reverse transfer capacitance
- Lead free in compliance with EU RoHS 2011/65/EU directive.
- Green molding compound as per IEC61249 Std. (Halogen Free)

Mechanical Data

- Case : TO-251AB, TO-252, SOT-223, TO-92 Package
- Terminals : Solderable per MIL-STD-750, Method 2026
- TO-251AB Approx. Weight : 0.0104 ounces, 0.297grams
- TO-252 Approx. Weight : 0.0104 ounces, 0.297grams
- SOT-223 Approx. Weight : 0.043 ounces, 0.123grams
- TO-92 Approx. Weight : 0.007 ounces, 0.196grams

Maximum Ratings and Thermal Characteristics (T_A=25[°]C unless otherwise noted)

PARAMETER		SYMBOL	TO-251AB/TO-252	SOT-223	TO-92	UNITS
Drain-Source Voltage		V _{DS}	60	V		
Gate-Source Voltage		V_{GS}	<u>+</u> 3	V		
Continuous Drain Current		I _D	1	0.3		А
Pulsed Drain Current		I _{DM}	4	1.2		А
Single Pulse Avalanche Energy (Note 1)		E _{AS}	50			mJ
Power Dissipation	T _c =25°C	P _D	27	3.3	3	W
	Derate above 25°C		0.216	0.026	0.024	W/°C
Operating Junction and Storage Temperature Range		T _J ,T _{STG}	-55~150			°C
Typical Thermal resistance						
- Junction to Case		$R_{ extsf{ heta}JC}$	4.63	-	-	°C/W
- Junction to Ambient		$R_{ extsf{ heta}JA}$	110	37.9 ^(Note 4)	140	

• Limited only By Maximum Junction Temperature

Electrical Characteristics ($T_A=25^{\circ}C$ unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNITS
Static		·				
Drain-Source Breakdown Voltage	BV_{DSS}	V _{GS} =0V,I _D =250uA	600	-	-	V
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$,I _D =250uA	2	3.34	4	V
Drain-Source On-State Resistance	R _{DS(on)}	V _{GS} =10V,I _D =0.5A	-	11.1	14	Ω
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =600V,V _{GS} =0V	-	0.02	1.0	uA
Gate-Source Leakage Current	I _{GSS}	V _{GS} = <u>+</u> 30V,V _{DS} =0V	-	<u>+</u> 10	<u>+</u> 100	nA
Diode Forward Voltage	V_{SD}	I _S =1A,V _{GS} =0V	-	0.85	1.4	V
Dynamic (Note 5)						
Total Gate Charge	Qg		-	3.3	-	nC
Gate-Source Charge	Q_gs	V _{DS} =480V, I _D =1A, V _{GS} =10V ^(Note 2,3)	-	1.1	-	
Gate-Drain Charge	Q_gd	V _{GS} =10V	-	1	-	
Input Capacitance	Ciss		-	95	-	pF
Output Capacitance	Coss	$V_{DS}=25V, V_{GS}=0V,$	-	21	-	
Reverse Transfer Capacitance	Crss	f=1.0MHZ	-	0.3	-	
Turn-On Delay Time	td _(on)	d _(on)		5	-	
Turn-On Rise Time	tr	V_{DD} =300V, I_{D} =1A, R _G =25Ω ^(Note 2,3)	-	20	-	ns
Turn-Off Delay Time	td _(off)	$R_{G}=25\Omega$	-	8	-	
Turn-Off Fall Time	t _f		-	25	-	
Drain-Source Diode						
Maximum Continuous Drain-Source			-	-	1	А
Diode Forward Current	I _S					
Maximum Pulsed Drain-Source				-	4	A
Diode Forward Current	I _{SM}		-			
Reverse Recovery Time	trr	V _{GS} =0V, I _S =1A	_	190	-	ns
Reverse Recovery Charge	Qrr	dI _F / dt=100A/us ^(Note 2)	-	0.53	-	uC

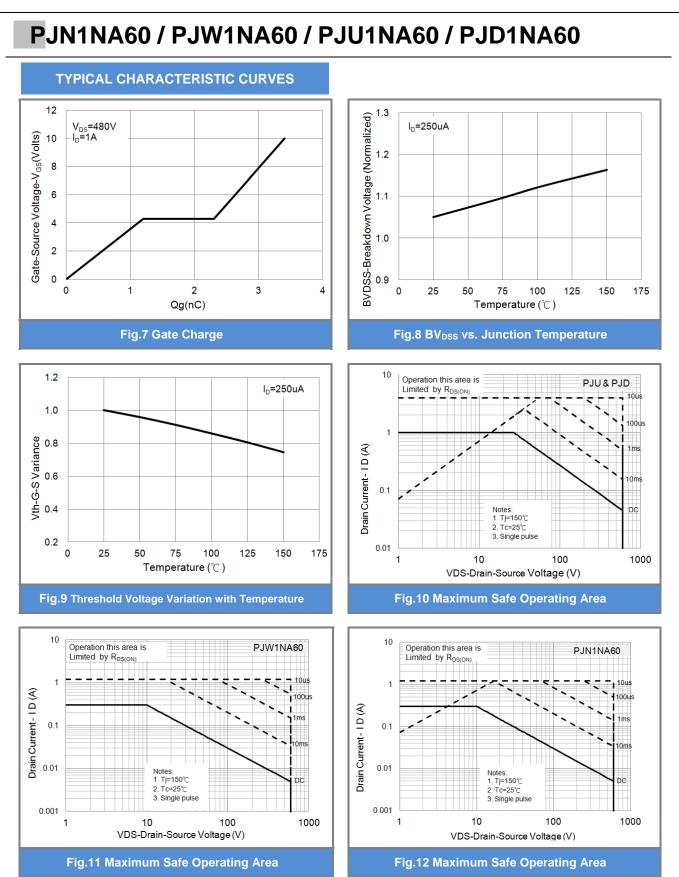
NOTES :

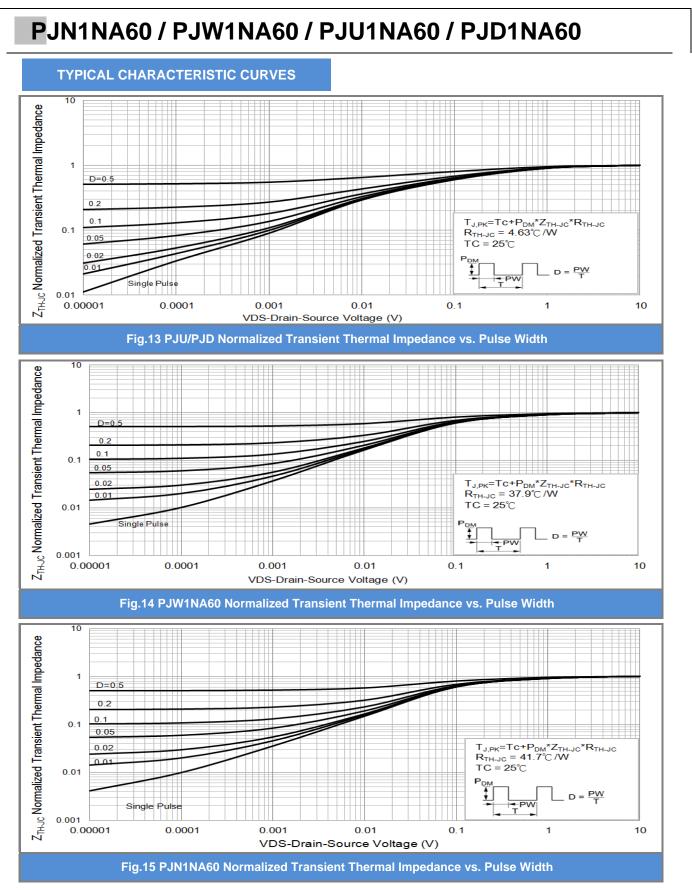
1. L=30mH, I_{AS}=1.77A, V_{DD}=50V, R_G=25 ohm, Starting T_J=25 $^{\circ}$ C

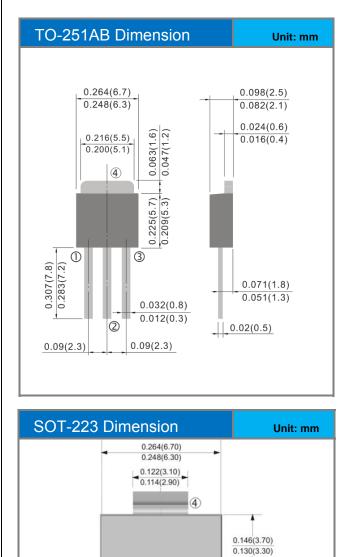
2. Pulse width \leq 300 us, Duty cycle \leq 2%

3. Essentially independent of operating temperature typical characteristics.

4. ReJA is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins mounted on a 1 inch FR-4 with 2oz. square pad of copper


5. Guaranteed by design, not subject to production testing.


PJN1NA60 / PJW1NA60 / PJU1NA60 / PJD1NA60 **TYPICAL CHARACTERISTIC CURVES** 1.2 1.5 V_{DS}=50V V_{GS}=10V V_{GS}=8V I_{Ds}-Drain-to-Source Current(A) I_{DS}-Drain-to-S ource Current(A) 1.2 0.9 0.6 V_{GS}=5V 0.3 T_=25 T_=125℃ V_{GS}=4.5V 0.0 0 10 20 30 40 50 0 2 6 8 10 4 VDS- Drain-to-Source Voltage(V) VGS-Gate-to-Source Voltage(V) **Fig.1 Output Characteristics Fig.2 Transfer Characteristics** 15 3.0 V_{GS}= 10V V_{GS}=10V, I_D=0.5A R_{DS}(on)- On-Resistance (Normalized) 14 2.5 $R_{DS}(on)$ - On-Resistance(Ω) 13 2.0 12 1.5 1.0 11 10 0.5 9 0.0 0.0 0.2 0.4 0.6 0.8 1.0 0 25 50 75 100 125 150 175 Temperature (℃) IDS-Drain-to-Source Current(A) Fig.3 On-Resistance vs. Drain Current Fig.4 On-Resistance vs. Junction Temperature 1000 10 Ciss Is-Source to-Drain Current(A) 100 1 Capacitance (pF) Coss 0.1 10 0.01 1 T_i=125℃ T_i=25℃ Crss V_{GS}=0V f=1MHz 0.001 0.1 0 0.3 0.6 0.9 1.2 1.5 0.1 10 100 1 VDS-Drain-Source Voltage (V) VSD-Source-to-Drain Voltage(V) Fig.5 Capacitance vs. Drain-Source Voltage Fig.6 Source-Drain Diode Forward Voltage



Packaging Information

3

0.091(2.30)

REF.

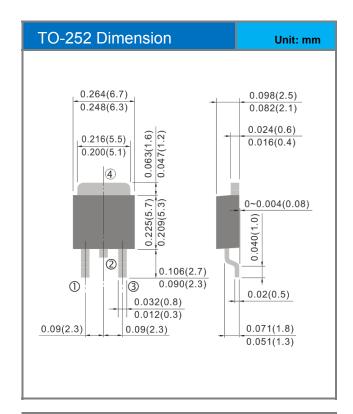
0.071(1.80)

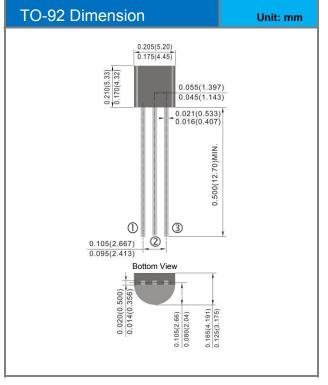
0.040(1.00)

0.031(0.80)

0.077(1.95)

0.059(1.50)


2


0.004(0.10)

0.0008(0.02)

0.288(7.30)

0.263(6.70)

0.014(0.35) 0.009(0.25) 1

0.032(0.80)

0.023(0.60)

PART NO PACKING CODE VERSION

Part No Packing Code	Package Type	Packing type	Marking	Version
PJU1NA60_T0_00001	TO-251AB	80pcs / Tube	U1NA60	Halogen free
PJD1NA60_L2_00001	TO-252	3,000pcs / 13" reel	D1NA60	Halogen free
PJW1NA60_R2_00001	SOT-223	2,500pcs / 13" reel	1NA60	Halogen free
PJN1NA60_B0_00001	TO-92	1000pcs / bag	1NA60	Halogen free

Disclaimer

- Reproducing and modifying information of the document is prohibited without permission from Panjit International Inc..
- Panjit International Inc. reserves the rights to make changes of the content herein the document anytime without notification. Please refer to our website for the latest document.
- Panjit International Inc. disclaims any and all liability arising out of the application or use of any product including damages incidentally and consequentially occurred.
- Panjit International Inc. does not assume any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.
- Applications shown on the herein document are examples of standard use and operation. Customers are responsible in comprehending the suitable use in particular applications. Panjit International Inc. makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.
- The products shown herein are not designed and authorized for equipments requiring high level of reliability or relating to human life and for any applications concerning life-saving or life-sustaining, such as medical instruments, transportation equipment, aerospace machinery et cetera. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Panjit International Inc. for any damages resulting from such improper use or sale.
- Since Panjit uses lot number as the tracking base, please provide the lot number for tracking when complaining.