
# SK 60 DTA



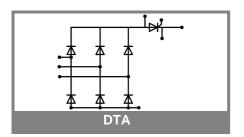
# SEMITOP® 3

## 3-phase bridge rectifier+ series thyristor

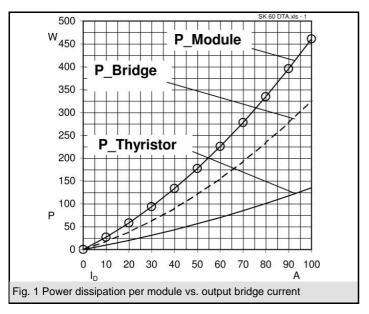
#### SK 60 DTA

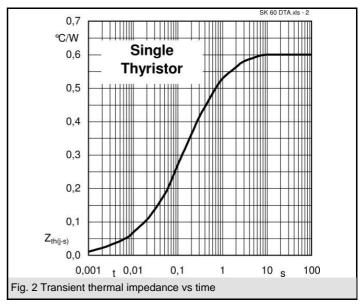
**Preliminary Data** 

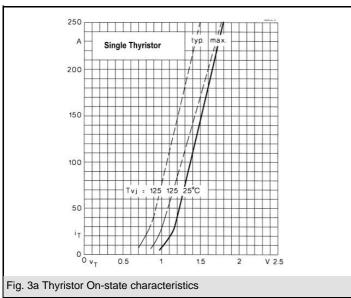
#### **Features**

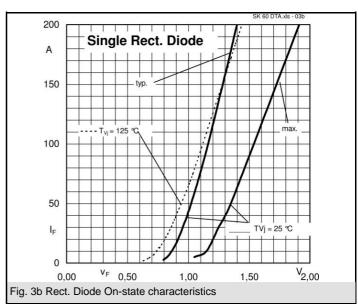

- · Compact design
- · One screw mounting
- · Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DBC)
- Glass passivated thyristor chips
  Reverse voltage up to 1600 V
- High surge currents

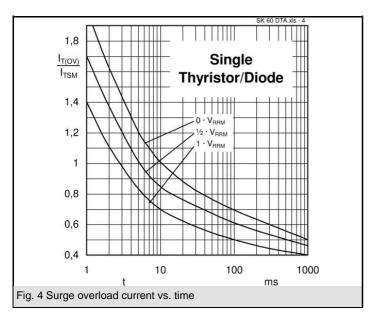
### **Typical Applications\***

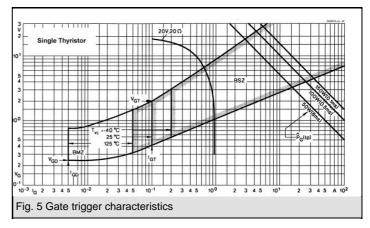

- Soft starters
- Light control
- Temperature control

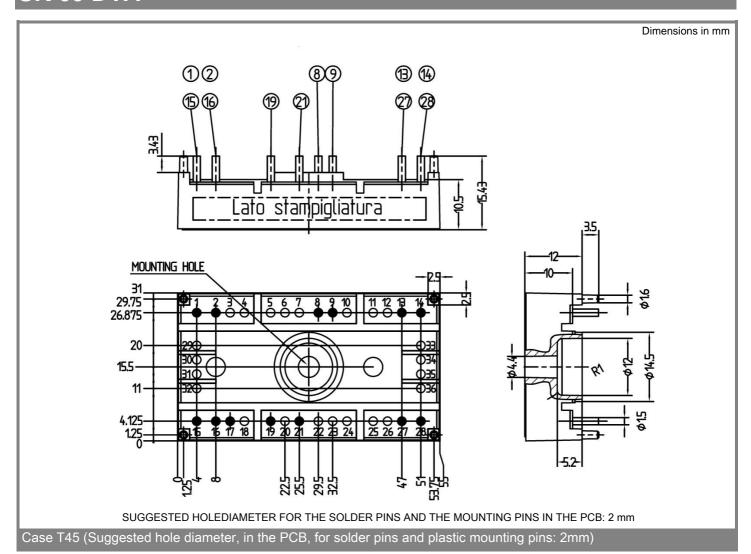

| V <sub>RSM</sub><br>V | V <sub>RRM</sub> , V <sub>DRM</sub><br>V | I <sub>D</sub> = 61 A<br>(T <sub>s</sub> = 80 °C) |
|-----------------------|------------------------------------------|---------------------------------------------------|
| 900                   | 800                                      | SK 60 DTA 08                                      |
| 1300                  | 1200                                     | SK 60 DTA 12                                      |
| 1700                  | 1600                                     | SK 60 DTA 16                                      |

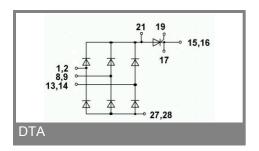

| Characteristics T <sub>s</sub> = 25°C unless otherwise specified |                                                                                 |              |       |  |
|------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------|-------|--|
| Symbol                                                           | Conditions                                                                      | Values       | Units |  |
| I <sub>D</sub>                                                   | T <sub>S</sub> = 80°C; Ind. load                                                | 61           | Α     |  |
| $I_{TAV}$                                                        | sin. 180°; $T_s = 25 (80)$ °C per thyristor                                     | 86 (49)      | Α     |  |
| I <sub>FAV</sub>                                                 | sin. 180°; T <sub>s</sub> = 25 (80) °C per diode                                | 65 (45)      | Α     |  |
| I <sub>TSM</sub> /I <sub>FSM</sub>                               | T <sub>vj</sub> = 25 (125) °C; 10 ms                                            | 1500 (1350)  | Α     |  |
| l²t                                                              | $T_{vj}$ = 25 (125) °C; 8,3 10 ms                                               | 11250 (9100) | A²s   |  |
| T <sub>stg</sub>                                                 |                                                                                 | -40,+125     | °C    |  |
| T <sub>solder</sub>                                              | terminals, 10 s                                                                 | 260          | °C    |  |
| Thyristor                                                        |                                                                                 |              | •     |  |
| (dv/dt) <sub>cr</sub>                                            | T <sub>vi</sub> = 125 °C                                                        | 1000         | V/µs  |  |
| (di/dt) <sub>cr</sub>                                            | $T_{vi}^{3} = 125 ^{\circ}\text{C}; f = f = \text{Hz}$                          | 50           | A/μs  |  |
| t <sub>q</sub>                                                   | $T_{vj} = 125 ^{\circ}\text{C}$ ; typ.                                          | 120          | μs    |  |
| I <sub>H</sub>                                                   | T <sub>vi</sub> = 25 °C; typ. / max.                                            | 100 / 200    | mA    |  |
| IL                                                               | $T_{vj} = 25 ^{\circ}\text{C};  R_{G} = 33 ^{\circ}\Omega;  \text{typ. / max.}$ | 200 / 500    | mA    |  |
| V <sub>T</sub>                                                   | $T_{vi} = 25 ^{\circ}\text{C}; (I_T = 200 \text{A}); \text{max}.$               | 1,8          | V     |  |
| V <sub>T(TO)</sub>                                               | T <sub>vi</sub> = 125 °C                                                        | max. 0,9     | V     |  |
| r <sub>T</sub>                                                   | T <sub>vi</sub> = 125 °C                                                        | max. 4,5     | mΩ    |  |
| I <sub>DD</sub> ; I <sub>RD</sub>                                | $T_{vj}^{y}$ = 125 °C; $V_{DD} = V_{DRM}$ ; $V_{RD} = V_{RRM}$                  | max. 20      | mA    |  |
| R <sub>th(j-s)</sub>                                             | Cont. per thyristor                                                             | 0,6          | K/W   |  |
| T <sub>vj</sub>                                                  |                                                                                 | - 40 + 125   | °C    |  |
| V <sub>GT</sub>                                                  | $T_{vi} = 25 ^{\circ}\text{C}; \text{d.c.}$                                     | 2            | V     |  |
| I <sub>GT</sub>                                                  | $T_{vi}^{vj} = 25  ^{\circ}\text{C}; \text{d.c.}$                               | 100          | mA    |  |
| V <sub>GD</sub>                                                  | $T_{vi}^{vj} = 125 ^{\circ}\text{C}; \text{d.c.}$                               | 0,25         | V     |  |
| I <sub>GD</sub>                                                  | T <sub>vi</sub> = 125 °C; d.c.                                                  | 5            | mA    |  |
| Diode                                                            | 1                                                                               | 1            | I     |  |
| $V_{F}$                                                          | $T_{vi} = 25 ^{\circ}\text{C}; (I_F = 75 \text{A}); \text{max}.$                | 1,45         | V     |  |
| V <sub>(TO)</sub>                                                | T <sub>vi</sub> = 125 °C                                                        | 0,8          | V     |  |
| r <sub>T</sub>                                                   | T <sub>vi</sub> = 125 °C                                                        | 4,5          | mΩ    |  |
| I <sub>RD</sub>                                                  | T <sub>vj</sub> = 125 °C; V <sub>RD</sub> = V <sub>RRM</sub>                    | 2            | mA    |  |
| R <sub>th(j-s)</sub>                                             | per diode                                                                       | 1            | K/W   |  |
| T <sub>vi</sub>                                                  |                                                                                 | -40+150      | °C    |  |
| Mechanic                                                         | al data                                                                         | 1            | 1     |  |
| $V_{isol}$                                                       | a. c. 50 Hz; r.m.s.; 1 s / 1 min                                                | 3000 (2500)  | V     |  |
| M <sub>1</sub>                                                   | mounting torque                                                                 | 2,5          | Nm    |  |
|                                                                  | 1                                                                               | •            |       |  |
| W                                                                |                                                                                 | 30           | g     |  |





## SK 60 DTA














This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

\* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.