

HIGH COMMUTATION TRIAC

On-State CurrentGate Trigger Current4 Amp $\leq 35 \text{ mA}$

Off-State Voltage 200 V ÷ 800 V

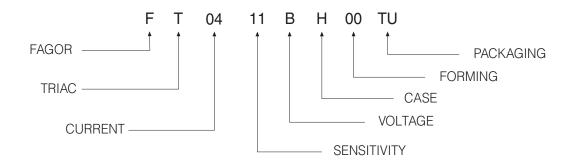
This series of TRIACs uses a high performance PNPN technology.

These parts are intended for general purpose AC switching applications with highly inductive loads.

Absolute Maximum Ratings, according to IEC publication No. 134

SYMBOL	PARAMETER	CONDITIONS	Value	Unit
I _{T(RMS)}	RMS On-state Current (full sine wave)	All Conduction Angle, T _C = 95 °C	4	А
I _{TSM}	Non-repetitive On-State Current	Full Cycle, 60 Hz (t = 16.7 ms)	33	А
I _{TSM}	Non-repetitive On-State Current	Full Cycle, 50 Hz (t = 20 ms)	30	А
I ² t	Fusing Current	tp = 10 ms, Half Cycle	4.5	A ² s
I _{GM}	Peak Gate Current	20 μs max. Tj =125 °C	4	А
$P_{G(AV)}$	Average Gate Power Dissipation	Tj =125 °C	1	W
dI/dt	Critical rate of rise of on-state current	$I_G = 2x I_{GT}, t_r \le 100 \text{ns}$	50	A/µs
		f= 120 Hz, Tj =125 °C		
T _j	Operating Temperature		(-40 + 125)	°C
T _{stg}	Storage Temperature		(-40 + 150)	°C
T _{sld}	Soldering Temperature	10s max	260	°C

SYMBOL	PARAMETER	VOLTAGE					Unit
STIVIDOL		В	D	М	S	N	
V_{DRM}	Repetitive Peak Off State	200	400	600	700	800	V
V_{RRM}	Voltage						


HIGH COMMUTATION TRIAC

Electrical Characteristics

SYMBOL	PARAMETER	CONDITIONS	Quadrant		SENSITIVITY		Unit
					11	14	
I _{GT} ⁽¹⁾	Gate Trigger Current	$V_D = 12V_{DC},R_L = 33\Omega, T_j = 25\;{}^{\circ}C$	Q1÷Q3	MAX	25	35	mA
V _{GT}	Gate Trigger Voltage	$V_D = 12 V_{DC}, R_L = 33 \Omega, T_j = 25 ^{\circ}C$	Q1÷Q3	MAX	1.3		V
V_{GD}	Gate Non Trigger Voltage	$V_D = V_{DRM}$, $R_L = 3.3 \text{ K}\Omega$, $T_j = 125 \text{ °C} Q1 \div Q3$		MIN	0.2		V
I _H ⁽²⁾	Holding Current	I _T = 100 mA, Gate open, T _j = 25 °C		MAX	25	35	mA
IL	Latching Current	$I_{G} = 1.2 I_{GT}, T_{j} = 25 ^{\circ}\text{C}$	Q1,Q3	MAX	40	50	mA
			Q2	MAX	50	60	
dV/dt (2)	Critical Rate of Voltage Rise	$V_D = 0.67 \times V_{DRM}$, Gate open		MIN	200	500	V/µs
		T _j = 125 °C					
(dl/dt)c (2)	Critical Rate of Current Rise	$(dv/dt)c = 0.1 V/\mu s$ $T_j = 125 °C$		MIN	-	-	A/ms
		$(dv/dt)c = 10 V/\mu s$ $T_j = 125 ^{\circ}C$		MIN	-	-	
		without snubber $T_j = 125$ °C		MIN	2.5	3.5	
V _{TM} ⁽²⁾	On-state Voltage	$I_T = 5.5 \text{ Amp, tp} = 380 \mu\text{s, T}_j = 25 ^{\circ}\text{C}$		MAX	1.6		V
V _{t (0)} (2)	Threshold Voltage	T _j = 125 °C		MAX	0.90		V
r _d ⁽²⁾	Dynamic resistance	T _j = 125 °C		MAX	120		mΩ
I _{DRM} /I _{RRM}	Off-State Leakage Current	$V_D = V_{DRM}, \qquad \qquad T_j = 125 \ ^{\circ}C$		MAX	0	.5	mA
		$V_R = V_{RRM}$, $T_j = 25$ °C		MAX	į	5	μΑ
R _{th(j-c)}	Thermal Resistance	for AC 360° conduction angle			2	.0	°C/W
	Junction-Case						
R _{th(j-a)}	Thermal Resistance						
	Junction-Ambient	$S = 1 \text{ cm}^2$			6	0	°C/W

⁽¹⁾ Minimum I_{GT} is guaranted at 5% of $I_{GT}\,max.$

PART NUMBER INFORMATION

⁽²⁾ For either polarity of electrode MT2 voltage with reference to electrode MT1.

Fig. 1: Maximum power dissipation versus RMS on-state current (full cycle).



Fig. 3: Relative variation of thermal impedance versus pulse duration.

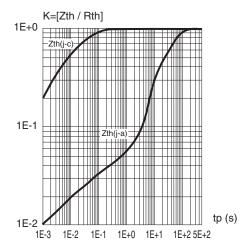
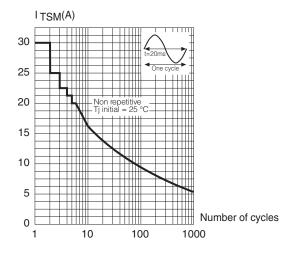



Fig. 5: Surge peak on-state current versus number of cycles

HIGH COMMUTATION TRIAC

Fig. 2: RMS on-state current versus case temperature (full cycle).

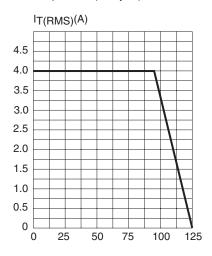


Fig. 4: On-state characteristics (maximum values)

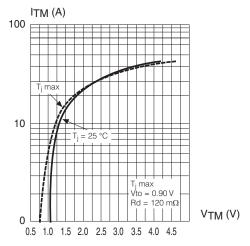


Fig. 6: Non repetitive surge peak on-state current for a sinusoidal pulse with width: tp < 10 ms, and corresponding value of 1²t.

HIGH COMMUTATION TRIAC

Fig. 7: Relative variation of gate trigger current, holding current and latching versus junction temperature (typical values)

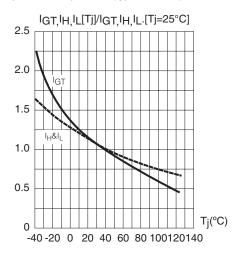
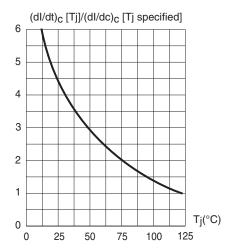
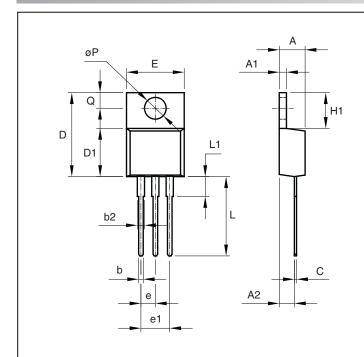




Fig. 8: Relative variation of critical rate of decrease of main current versus junction temperature

PACKAGE MECHANICAL DATA TO-220AB

	DIMENSIONS				
REF.	Milim	neters			
	Min.	Max.			
Α	4.47	4.67			
A1	1.17	1.37			
A2	2.52	2.82			
b	0.71	0.91			
b2	1.17	1.37			
С	0.31	0.53			
D	14.65	15.35			
D1	8.50	8.90			
Е	10.01	10.36			
е	2.51	2.57			
e1	4.98	5.18			
H1	6.15	6.45			
L	13.40	13.96			
L1	3.56	3.96			
Р	3.735	3.935			
Q	2.59	2.89			

Mounting Torque

1 N.m

(*) Limiting values and life support applications, see Web page.