

On-State Current Gate Trigger Current

16 Amp

≤ 100 mA

Off-State Voltage

200 V ÷ 800 V

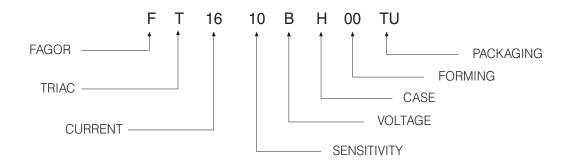
This series of TRIACs uses a high performance PNPN technology.

These parts are intended for general purpose AC switching applications with highly inductive loads.

Absolute Maximum Ratings, according to IEC publication No. 134

SYMBOL	PARAMETER	CONDITIONS	Value	Unit
I _{T(RMS)}	RMS On-state Current (full sine wave)	All Conduction Angle, T _C = 100 °C	16	А
I _{TSM}	Non-repetitive On-State Current	Full Cycle, 60 Hz (t = 16.7 ms)	170	А
I _{TSM}	Non-repetitive On-State Current	Full Cycle, 50 Hz (t = 20 ms)	160	А
l²t	Fusing Current	tp = 10 ms, Half Cycle	144	A ² s
I _{GM}	Peak Gate Current	20 μs max. Tj =125°C	4	А
$P_{G(AV)}$	Average Gate Power Dissipation	Tj =125°C	1	W
dI/dt	Critical rate of rise of on-state current	I _G = 2x I _{GT} , tr ≤100ns	50	A/µs
		f= 120 Hz, Tj =125°C		
T _j	Operating Temperature		(-40 +125)	°C
T _{stg}	Storage Temperature		(-40 +150)	°C
T _{sld}	Soldering Temperature	10s max	260	°C

SYMBOL	PARAMETER	PARAMETER VOLTAGE			Unit		
		В	D	М	S	N	
V_{DRM}	Repetitive Peak Off State	200	400	600	700	800	V
V_{RRM}	Voltage						



Electrical Characteristics

SYMBOL	PARAMETER	CONDITIONS		Quadrant	SENSITIVITY		TY	Unit		
						10	13	18	17	
I _{GT} ⁽¹⁾	Gate Trigger Current	$V_D = 12 V_{DC}, R_L = 33\Omega,$	$T_j = 25$ °C	Q1÷Q3 Q4	MAX MAX		50 75	25 50	50 100	mA mA
V_{GT}	Gate Trigger Voltage	$V_D = 12 V_{DC}, R_L = 33\Omega,$	$T_j = 25$ °C	Q1÷Q4	MAX		1	.3		V
V_{GD}	Gate Non Trigger Voltage	$V_D = V_{DRM}$, $R_L = 3.3 K\Omega$,	T _j = 125 °C	Q1÷Q4	MIN		0	.2		V
I _H (2)	Holding Current	$I_T = 100 \text{ mA}$, Gate open,	T _j = 25 °C		MAX	25	50	25	50	mA
I _L	Latching Current	$I_G = 1.2 I_{GT}, T_j = 25 ^{\circ}\text{C}$		Q1,Q3,Q4 Q2	MAX MAX		70 80	40 80	70 100	mA
dV/dt (2)	Critical Rate of Voltage Rise	$V_D = 0.67 \times V_{DRM}$, Gate o $T_j = 125$ °C	pen		MIN	500	1000	700	1000	V/µs
(dV/dt)c(2)	Critical rise rate of Commutating off-state voltage	(dl/dt)c = 2.7 A/ms	T _j = 125 °C		MIN	3	8	5	10	V/µs
V _{TM} (2)	On-state Voltage	$I_T = 22.5 \text{ Amp, tp} = 380 \mu\text{s}$	$T_j = 25 ^{\circ}\text{C}$		MAX		1.	6		V
$V_{t(0)}$ (2)	Threshold Voltage	T _j = 125 °C			MAX		0.	77		V
r _d (2)	Dynamic Resistance	T _j = 125 °C			MAX		4	0		mΩ
I _{DRM} /I _{RRM}	Off-State Leakage Current		$T_j = 125 ^{\circ}\text{C}$ $T_j = 25 ^{\circ}\text{C}$		MAX MAX			<u>2</u> 5		m A μΑ
$R_{th(j-c)}$	Thermal Resistance Junction-Case	for AC 360° conduction a	ngle				1.	1		°C/W
$R_{\text{th(j-a)}}$	Thermal Resistance Junction- Ambient						60)		°C/W

⁽¹⁾ Minimum I_{GT} is guaranted at 5% of I_{GT} max.

PART NUMBER INFORMATION

⁽²⁾ For either polarity of electrode MT2 voltage with reference to electrode MT1.

Fig. 1: Maximum power dissipation versus RMS on-state current (full cycle)

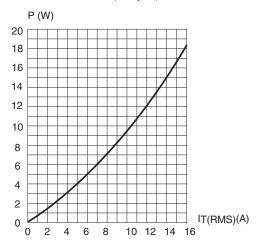


Fig. 3:: Relative variation of thermal impedance versus pulse duration

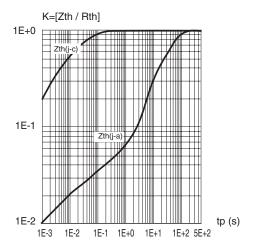


Fig. 5: Surge peak on-state current versus number of cycles

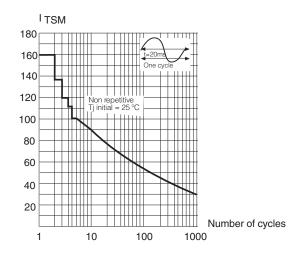


Fig. 2: RMS on-state current versus case temperature (full cycle)

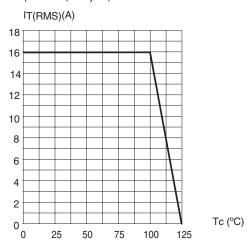


Fig. 4: On-state characteristics (maximum values)

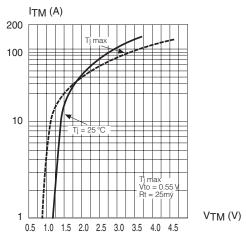


Fig. 6: Non repetitive surge peak on-state current for a sinusoidal pulse with width: tp < 10 ms, and corresponding value of I²t.

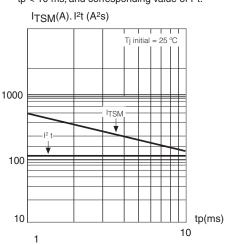


Fig. 7: Relative variation of gate trigger current, holding current and latching versus junction temperature (typical values)

1.5
1.0
1.6T, IH, IL[Tj]/IGT, IH, IL.[Tj=25°C]
2.0
1.5
1.0
0.5
0
-40 -20 0 20 40 60 80 100 120 140

Fig. 8: Relative variation of critical rate of decrease of main current versus junction temperature

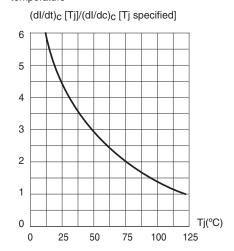
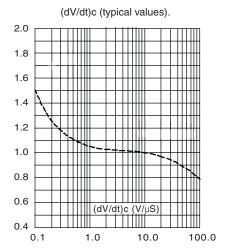
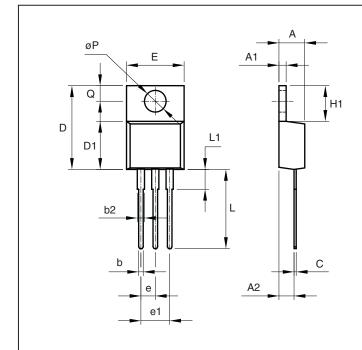




Fig. 9: Relative variation of critical rate of decrease of main current versus

PACKAGE MECHANICAL DATA

TO-220AB

	Milimeters		
REF.			
	Min.	Max.	
Α	4.47	4.67	
A1	1.17	1.37	
A2	2.52	2.82	
b	0.71	0.91	
b2	1.17	1.37	
С	0.31	0.53	
D	14.65	15.35	
D1	8.50	8.90	
E	10.01	10.36	
е	2.51	2.57	
e1	4.98	5.18	
H1	6.15	6.45	
L	13.40	13.96	
L1	3.56	3.96	
Р	3.735	3.935	
Q	2.59	2.89	
<u> </u>	=100	_,	

DIMENSIONS

Mounting Torque

1 N.m

(*) Limiting values and life support applications, see Web page.