
BT152 Series

THYRISTORS

FEATURE

Glass passivated thyristors in a plastic TO220 package. They are intended for use in applications requiring high bidirectional blocking voltage capability and high thermal cycling performance.

Typical applications include motor control, industrial and domestic lighting, heating and static switching. Compliance to RoHS.

ABSOLUTE MAXIMUM RATINGS

Symbol	Ratings	Value			Unit	
		BT152-400R	BT152-600R	BT152-800R		
V _{DRM}	Repetitive peak off-state voltage	450	650	800	V	
V _{RRM}	Repetitive peak reverse voltage	450	650	800	V	
I _{T(RMS)}	RMS on-state current	20			Α	
I _{T(AV)}	Average on-state current	13			Α	
I _{TSM}	Non-repetitive peak on- state current	200			Α	
P _{GM}	Peak gate power	20		W		
PG _(AV)	Average gate power	0.5		W		
T _{stg}	Storage temperature range	-40 to +150		°C		
T _j	Operating junction temperature	125		°C		

THERMAL CHARACTERISTICS

Symbol	Ratings	Value	Unit	
R _{∂j-mb}	Thermal resistance junction to mounting base ≤ 1.1		°C/W	
R∂JA	Thermal resistance junction to ambient	≤ 60	C/VV	

BT152 Series

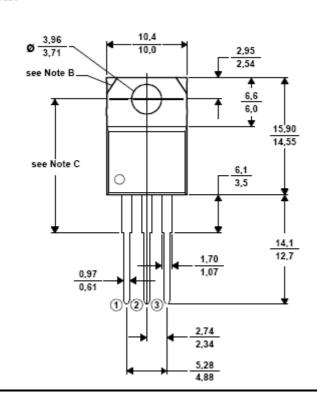
ELECTRICAL CHARACTERISTICS

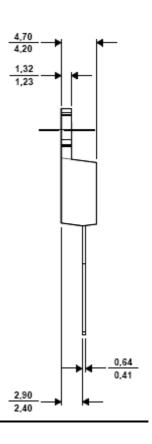
TC=25°C unless otherwise noted

Symbol	Ratings	Test Condition(s)	Min	Тур	Max	Unit
	Panatitiva naak	BT152-400R	450	-	-	
V_{DRM}	Repetitive peak off-state voltage	BT152-600R	650	-	-	
		BT152-800R	800	-	-	V
V _{RRM}	Repetitive peak reverse voltage	BT152-400R	450	-	-	V
		BT152-600R	650	-	-	
		BT152-800R	800	-	-	
I _{GT}	Gate trigger current	$V_D = 12 \text{ V}; I_T = 100 \text{ mA}$	-	-	32	mΑ
V _{GT}	Gate trigger voltage	$V_D = 12 \text{ V}; I_T = 100 \text{ mA}$	-	-	1.5	V
IL	Latching current	$V_D = 12 \text{ V}; I_{GT} = 100 \text{ mA}$	-	-	80	mA
I _H	Holding current	$V_D = 12 \text{ V}; I_{GT} = 100 \text{ mA}$	-	_	60	mA
I _D	Off-state current	$V_D = V_{DRM \text{ max}}$, $T_j = 125^{\circ}C$	-	-	1	mA
I _R	Reverse current	$V_R = V_{RRM \text{ max}}, T_j = 125^{\circ}C$	-	-	1	mA
V _T	On-state voltage	$I_T = 40 \text{ A}$	-	-	1.75	V

DYNAMIC CHARACTERISTICS

TC=25°C unless otherwise noted


Symbol	Ratings	Test Condition(s)	Min	Тур	Max	Unit
dV _D /dt	Critical rate of rise of off-state voltage	V _{DM} = 67% V _{DRMmax} T _j = 125°C Exponential waveform; gate open circuit	200	300	-	V/µs
t _{gt}	Gate controlled turn-on time	$I_{TM} = 40 \text{ A}; V_D = V_{DRMmax}$ $I_G = 0.1 \text{ A}; dI_G/dt = 5 \text{ A}/\mu\text{s}$	-	2	-	μs
t _q	Circuit commutated Turn-off time	V_{DM} = 67% V_{DRMmax} T_j = 125°C I_{TM} = 50 A; V_R = 25 V R_{GK} = 100 Ω dI_{TM}/dt = 30 A/ μ s dV_D/dt = 50 V/ μ S	-	70	-	μs



BT152 Series

MECHANICAL DATA CASE TO-220

Pin 1 :	Main Terminal 1
Pin 2 :	Main Terminal 2
Pin 3 :	Gate
Case :	Main Terminal 2

Revised August 2012

Information furnished is believed to be accurate and reliable. However, Comset Semiconductors assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. Data are subject to change without notice. Comset Semiconductors makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Comset Semiconductors assume any liability arising out of the application or use of any product and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Comset Semiconductors' products are not authorized for use as critical components in life support devices or systems.