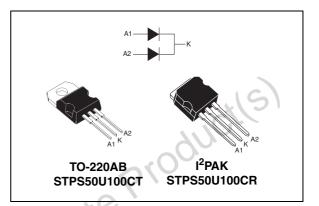


STPS50U100C

ULVF[™] power Schottky rectifier


Features

- ultralow forward voltage drop
- high current capability
- high frequency operation

Description

The STPS50U100C is a dual power Schottky diode rectifier, suited for high frequency switch mode power supplies.

Featuring an ultralow forward voltage (ULVF) drop, this device, packaged in TO-220AB and I²PAK, is intended to be used in notebook, game station and desktop adaptors as well as server SMPS. It has been especially designed to help power supply manufacturers meet the recently introduced worldwide efficiency standards.

Table 1. Device summary

Symbol	Value
I _{F(AV)}	2 x 25 A
V _{RRM}	100 V
V _F (typ) (25 A @ 125 °C)	0.64 V
T _j (max)	150 °C

TM: ULVF is a trademark of STMicroelectronics

Characteristics 1

Table 2. Absolute ratings (limiting values per diode at 25 °C, unless otherwise specified)

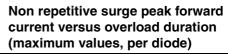
Symbol	Parameter			Value	Unit
V _{RRM}	Repetitive peak reverse voltage			100	V
I _{F(RMS)}	Forward rms current			50	А
I _{F(AV)}	Average forward current, $\delta = 0.5$	T _C = 120 °C T _C = 105 °C	Per diode Per device	25 50	A
I _{FSM}	Surge non repetitive forward current	t _p = 10 ms, h	alf sine-wave	250	Α
T _{stg}	Storage temperature range			-65 to + 150	°C
Тj	Maximum operating junction temperature ⁽¹⁾			150	°C
. dPtot	1				

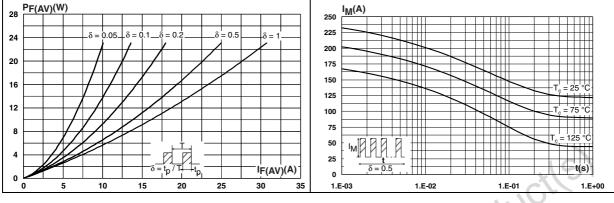
Thermal resistance Table 3.

1. dPtot dTj <	$\frac{1}{Rth(j-a)}$ condition to avoid thermal ru	naway for a diode on its own heatsink	900	
Table 3.	Thermal resistance	010		
Symbol		Parameter	Value	Unit
R _{th (j-c)}	Junction to case	Per diode Per device	1.3 0.9	°C/W
R _{th (c)}	Coupling	~105	0.45	°C/W

When the diodes 1 and 2 are used simultaneously:

 $\Delta T_{j}(\text{diode 1}) = P(\text{diode1}) \times R_{th(j-c)}(\text{Per diode}) + P(\text{diode2}) \times R_{th(c)}$


Table 4. Static electrical characteristics


Symbol	Parameter	Tests co	onditions	Min.	Тур.	Max.	Unit
	010	T _j = 25 °C	V _R = 70 V	-	15	-	μA
I _R	Reverse leakage current	T _j = 125 °C	v _R = 70 v	-	10	-	mA
'R	neverse leakage current	T _j = 25 °C	V - V	-	30	200	μA
		T _j = 125 °C	V _R = V _{RRM}	-	15	40	mA
105		T _j = 25 °C	I _F = 5 A	-	0.48	-	
		T _j = 125 °C	1F – 2 A	-	0.38	-	
V _F	Forward voltage drop	T _j = 25 °C	l _F = 15 A	-	0.58	-	V
۷F	Torward voltage drop	T _j = 125 °C	1F - 13 A	-	0.54	-	v
		T _j = 25 °C	I _F = 25 A	-	0.67	0.73	
		T _j = 125 °C	1 _F – 23 A	-	0.64	0.7	

To evaluate the conduction losses use the following equation: $P = 0.475 \times I_{F(AV)} + 0.009 I_{F}^{2}(RMS)$

Figure 1. Average forward power dissipation Figure 2. versus average forward current (per diode)

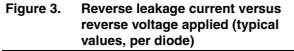


Figure 4. Average forward current versus ambient temperature $(\delta = 0.5, \text{ per diode})$

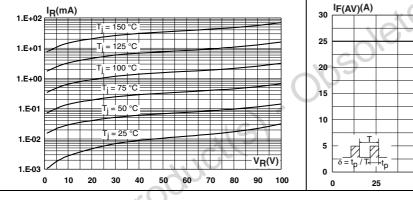


Figure 5. Relative variation of thermal impedance junction to case versus pulse duration

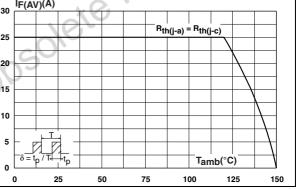
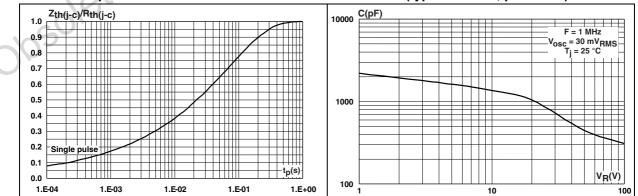
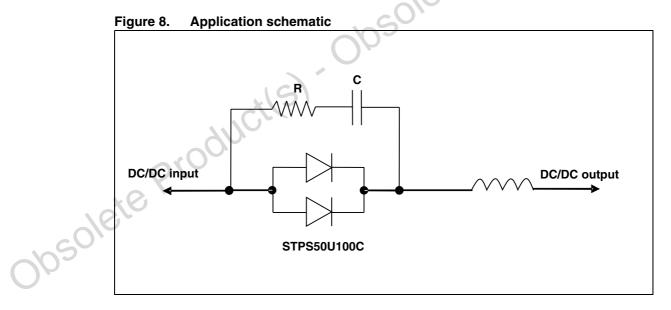



Figure 6. Junction capacitance versus reverse voltage applied (typical values, per diode)



riguie 7. Torward	
50	I _{FM} (A)
45	
40	
35	
30	T ₁ = 125 °C (Maximum value)
25	
20	
15	(Typical value) T _i = 25 °C (Maximum value)
10	
5	
0	0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Application ir	ct(S)

Figure 7. Forward voltage drop versus forward current (per diode)

Application information 2

It is mandatory to ensure a peak reverse voltage below the $V_{\rm RBM}$ absolute rating. ST recommends the use of an RC clamping snubber circuit in parallel with the STPS50U100C device.

3 Package information

- Epoxy meets UL94,V0
- Cooling method: by conduction (C)
- Recommended torque value: 0.4 to 0.6 N·m

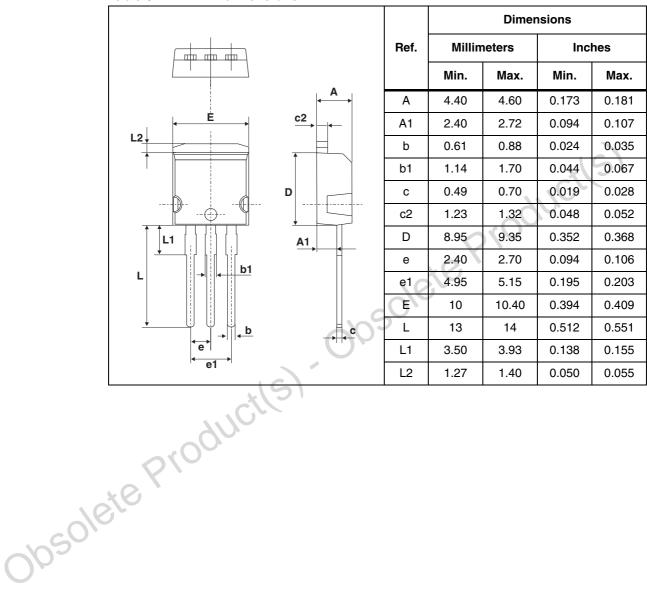

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: <u>www.st.com</u>. ECOPACK[®] is an ST trademark.

Table 5. TO-220AB dimensions

Γ				Dimer	sions	51
		Ref.	Millim	neters	Inc	hes
			Min.	Max.	Min.	Max.
		А	4.40	4.60	0.173	0.181
		С	1.23	1.32	0.048	0.051
	H2 A Dia C	D	2.40	2.72	0.094	0.107
		E	0.49	0.70	0.019	0.027
		F	0.61	0.88	0.024	0.034
		F1	1.14	1.70	0.044	0.066
		F2	1.14	1.70	0.044	0.066
	F2	G	4.95	5.15	0.194	0.202
		G1	2.40	2.70	0.094	0.106
		H2	10	10.40	0.393	0.409
	F, ←	L2	16.4	typ.	0.64	5 typ.
		L4	13	14	0.511	0.551
16	$\begin{array}{c c} & & & & \\ & & & \\ & &$	L5	2.65	2.95	0.104	0.116
5	G	L6	15.25	15.75	0.600	0.620
		L7	6.20	6.60	0.244	0.259
		L9	3.50	3.93	0.137	0.154
		М	2.6	typ.	0.10	2 typ.
		Dia.	3.75	3.85	0.147	0.151

Mounting (soldering) the I²PAK metal slug (heatsink) with alloy, like a surface mount device, IS NOT PERMITTED. A standard through-hole mounting is mandatory.

Table 6.I²PAK dimensions

Ordering information 4

Table 7. **Ordering information**

Order code	Marking	Package	Weight	Base qty	Delivery mode
STPS50U100CT	STPS50U100C	TO-220AB	2.23 g	50	Tube
STPS50U100CR	STPS50U100C	I ² PAK	1.49 g	50	Tube

For the latest information on available order codes see the product pages on www.st.com.

Revision history 5

Table 8. **Document revision history**

		rision history
Date	Revision	Changes
17-Nov-2009	1	First release.
04-Nov-2010	2	Added trademark statement for UVLF.
	duct	

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2010 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 16603 Rev 2

