

Digital Transistor(built-in resistors)

Feature

- Built-in bias resistors enable the configuration of an inverter circuit without connecting external input resistors (see equivalent circuit).
- The bias resistors consist of thin-film resistors with complete isolation to allow negative biasing of the input. They also have the advantage of almost completely eliminating parasitic effects.
- Only the on/off conditions need to be set for operation, making the device design easy.

Applications

- Inverter
- Interface
- Driver

Mechanical Characteristics

- Lead finish:100% matte Sn(Tin)
- Mounting position: Any
- ➤ Qualified max reflow temperature:260 °C
- Device meets MSL 1 requirements
- ➤ Pure tin plating: 7 ~ 17 um
- ▶ Pin flatness:≤3mil

Structure

NPN epitaxial planar silicon transistor (Resistor built-in type)

Electrical characteristics per line@25℃ (unless otherwise specified)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Input voltage	$V_{I(off)}$	V _{CC} =5V,I _O =100μA	-	-	0.5	V
Input voltage	$V_{I(on)}$	V _O =0.3V,I _O =5mA	1.3	-	1	V
Output voltage	$V_{O(off)}$	I _O /I _I =5mA/0.25mA	-	0.1	0.3	V
Input current	I _I	V _I =5V	-	-	1.8	mA
Output current	I _{O(off)}	V _{CC} =50V, V _I =0V	ı	-	0.5	μΑ
DC current gain	G ₁	V _O =5V, I _O =10mA	80	-	-	-
Input resistance	R ₁	-	3.29	4.7	6.11	ΚΩ
Resistance ration	R ₂ /R ₁	-	8	10	12	-
Transition frequency	f⊤	V _{CE} =10V, I _E = −5mA, f=100MHz	-	250	-	MHz

Absolute maximum rating@25℃

Rating	Symbol	Value	Units
Supply voltage	Vcc	50	V
Input voltage	V _{IN}	-5 to +30	V
Output surrent	Io	100	mA
Output current	I _{C(MAX.)}	100	mA
Power dissipation	P _d	150	mW
Junction temperature	Tj	150	°C
Storage temperature	T _{stg}	-55 to +150	$^{\circ}$ C

Typical Characteristics

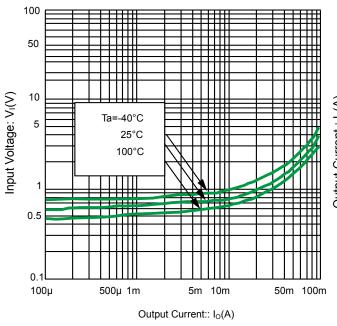


Fig 1.Input Voltage vs. output current @V_O=0.3V (ON characteristics)

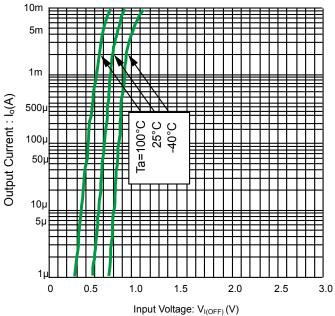


Fig 2.Output current vs. input voltage @Vcc=5V(OFF characteristics)

Digital Transistor(built-in resistors)

PDTC143ZM

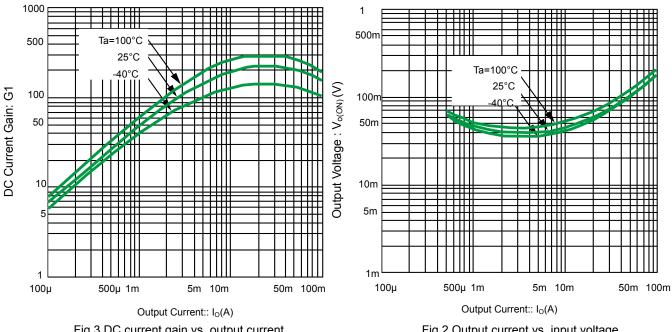
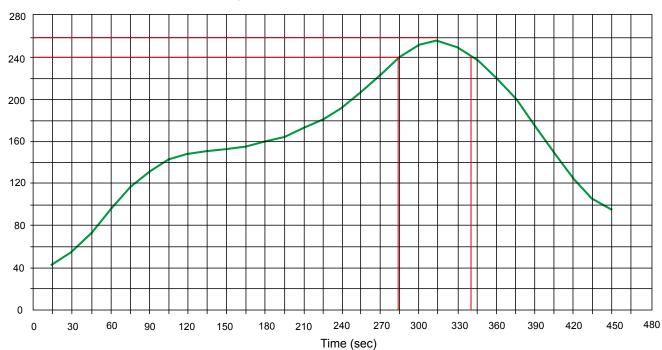
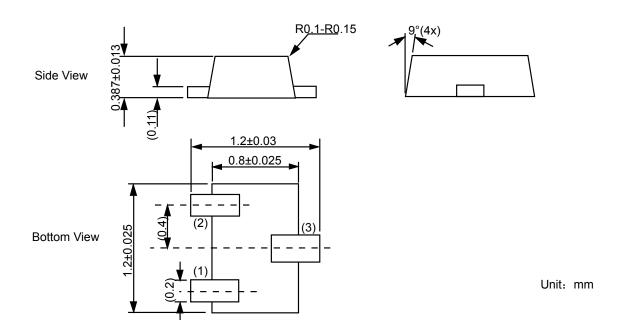
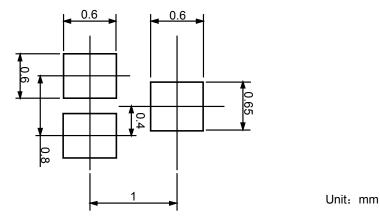



Fig 3.DC current gain vs. output current $@V_O=5V$


Fig 2.Output current vs. input voltage
@Io/I_I =20


Solder Reflow Recommendation

Peak Temp=257°C, Ramp Rate=0.802deg. °C/sec

Product dimension (SOT-723)

Ordering information

Device	Package	Shipping		
PDTC143ZM	SOT-723 (Pb-Free)	8000 / Tape & Reel		

IMPORTANT NOTICE

and Prisemi are registered trademarks of Prisemi Electronics Co., Ltd (Prisemi), Prisemi reserves the right to make changes without further notice to any products herein. Prisemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Prisemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in Prisemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Prisemi does not convey any license under its patent rights nor the rights of others. The products listed in this document are designed to be used with ordinary electronic equipment or devices, Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

Website: http://www.prisemi.com
For additional information, please contact your local Sales Representative.

©Copyright 2009, Prisemi Electronics

Prisemi is a registered trademark of Prisemi Electronics.

All rights are reserved.