

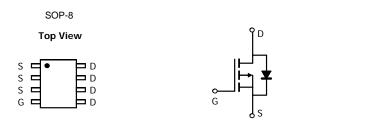
LO4459PT1G

P-Channel Enhancement Mode Field Effect Transistor

General Description

The LO4459PT1G uses advanced trench technology to provide excellent $R_{DS(ON)}$ with low gate charge. This device is suitable for use as a load switch or in PWM applications.

LO4459PT1G is a Green Product ordering option.


Features

 $V_{DS}(V) = -30V$

 $I_{D} = -6.5A$

 $R_{DS(ON)}$ < 46m Ω (V_{GS} = -10V)

 $R_{DS(ON)}$ < 72m Ω (V_{GS} = -4.5V)

4459 ≥
1 2 3 4

M = Date Code

DEVICE MARKING

Absolute Maximum Ratings T _A =25°C unless otherwise noted								
Parameter		Symbol	Maximum	Units				
Drain-Source Voltage		V_{DS}	-30	V				
Gate-Source Voltage		V_{GS}	±20	V				
Continuous Drain	T _A =25°C		-6.5					
Current ^A	T _A =70°C	I_D	-5.3	Α				
Pulsed Drain Current ^B		I_{DM}	-30					
	T _A =25°C	D	3.1	W				
Power Dissipation A	T _A =70°C	-P _D	2	VV				
Junction and Storage Temperature Range		T_J , T_{STG}	-55 to 150	°C				

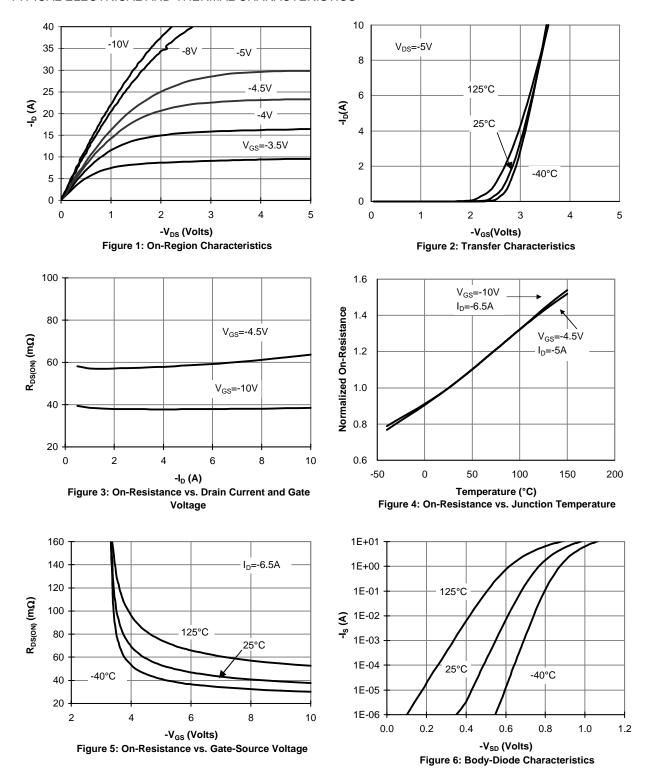
Thermal Characteristics									
Parameter	Symbol Typ Max		Units						
Maximum Junction-to-Ambient A	t ≤ 10s	ь	33	40	°C/W				
Maximum Junction-to-Ambient A	Steady-State	$R_{\theta JA}$	62	75	°C/W				
Maximum Junction-to-Lead ^C Steady-State		$R_{\theta JL}$	18	24	°C/W				

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Parameter Conditions		Тур	Max	Units
STATIC F	PARAMETERS					
BV _{DSS}	Drain-Source Breakdown Voltage	$I_D = -250 \mu A, V_{GS} = 0 V$	-30			V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =-24V, V _{GS} =0V			-1	
	Zero Gate Voltage Drain Current	T _J =55°C			-5	μΑ
I _{GSS}	Gate-Body leakage current	V _{DS} =0V, V _{GS} =±20V			±100	nA
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$ $I_{D}=-250\mu A$	-1	-1.85	-3	V
I _{D(ON)}	On state drain current	V _{GS} =-10V, V _{DS} =-5V	-30			Α
R _{DS(ON)}		V _{GS} =-10V, I _D =-5.3A			46	mΩ
	Static Drain-Source On-Resistance	T _J =125°C			68	11177
		V _{GS} =-4.5V, I _D =-4.2A			72	mΩ
g FS	Forward Transconductance	Forward Transconductance V _{DS} =-5V, I _D =-6.5A		11		S
V_{SD}	Diode Forward Voltage	I _S =-1A,V _{GS} =0V		-0.78	-1	V
Is	Maximum Body-Diode Continuous Cur			-3.5	Α	
DYNAMIC	PARAMETERS					
C _{iss}	Input Capacitance			668	830	pF
C _{oss}	Output Capacitance	V_{GS} =0V, V_{DS} =-15V, f=1MHz		126		pF
C _{rss}	Reverse Transfer Capacitance			92		pF
R_g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz		6	9	Ω
SWITCHI	NG PARAMETERS					
Q _g (10V)	Total Gate Charge (10V)			12.7	16	nC
Q _g (4.5V)	Total Gate Charge (4.5V)	V _{GS} =-10V, V _{DS} =-15V, I _D =-6.5A		6.4		nC
Q_{gs}	Gate Source Charge	V _{GS} =-10V, V _{DS} =-13V, I _D =-0.3A		2		nC
Q_{gd}	Gate Drain Charge			4		nC
t _{D(on)}	Turn-On DelayTime			7.7		ns
t _r	Turn-On Rise Time	V_{GS} =-10V, V_{DS} =-15V, R_L =2.5 Ω ,		6.8		ns
$t_{D(off)}$	Turn-Off DelayTime	$R_{GEN}=3\Omega$		20		ns
t _f	Turn-Off Fall Time			10		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =-6.5A, dI/dt=100A/μs		22	30	ns
Q _{rr}	Body Diode Reverse Recovery Charge	_F I _F =-6.5A, dl/dt=100A/μs		15		nC

A: The value of $R_{\theta JA}$ is measured with the device mounted on $1in^2$ FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The value in any a given application depends on the user's specific board design. The current rating is based on the $t \le 10s$ thermal resistance rating.

B: Repetitive rating, pulse width limited by junction temperature.


C. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to lead R $_{\theta JL}$ and lead to ambient.

D. The static characteristics in Figures 1 to 6are obtained using < $300\mu s$ pulses, duty cycle 0.5% max.

E. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The SOA curve provides a single pulse rating.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

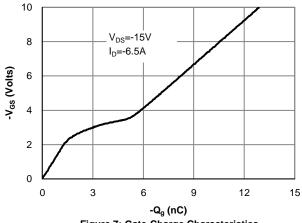


Figure 7: Gate-Charge Characteristics

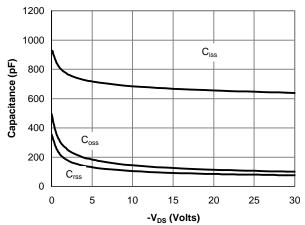


Figure 8: Capacitance Characteristics

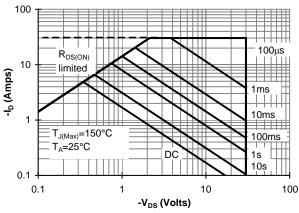
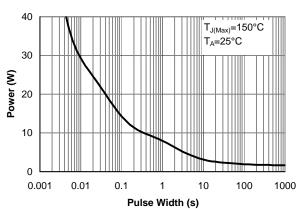
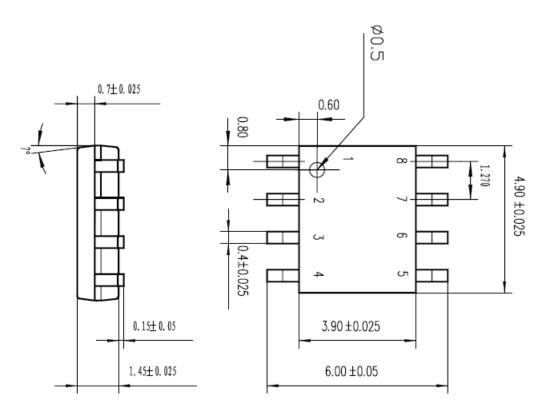


Figure 9: Maximum Forward Biased Safe Operating Area (Note E)




Figure 10: Single Pulse Power Rating Junction-to-Ambient (Note E)

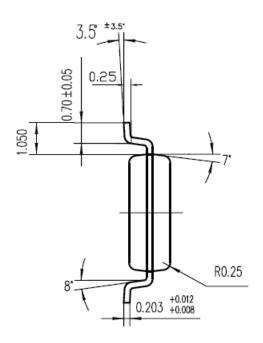


Figure 11: Normalized Maximum Transient Thermal Impedance(Note E)

SOP-8

