JIANGSU CHANGJIANG ELECTRONICS TECHNOLOGY CO., LTD # **TO-220-3L Plastic-Encapsulate MOSFETS** ## **CJP85N80** #### **N-Channel Power MOSFET** #### **DESCRIPTION** The CJP85N80 uses advanced trench technology and design to provide excellent $R_{DS(on)}$ with low gate charge. Good stability and uniformity with high E_{AS} . This device is suitable for use in PWM, load switching and general purpose applications. #### **FEATURE** - Advanced trench process technology - Special designed for convertors and power controls - High density cell design for ultra low R_{DS(on)} - Fully characterized avalanche voltage and current - Fast switching - Good stability and uniformity with high E_{AS} - Excellent package for good heat dissipation - Special process technology for high ESD capability #### **APPLICATION** - Power switching application - Hard switched and high frequency circuits - Uninterruptible power supply #### Maximum ratings (T_a=25℃ unless otherwise noted) | Parameter | Symbol | Value | Unit | | |---|-------------------|-----------|------|--| | Drain-Source voltage | V _{DS} | 85 | V | | | Gate-Source Voltage | V_{GS} | ±20 | | | | Continuous Drain Current | I _D 80 | | A | | | Pulsed Drain Current (note 1) | I _{DM} | 320 | ^ | | | Power Dissipation (note 2, T _a =25°C) | P _D | 2 | W | | | Maximum Power Dissipation (note 3 , T _c =25°C) | ГD | 170 | W | | | Single Pulsed Avalanche Energy (note 4) | E _{AS} | 620 | mJ | | | Thermal Resistance from Junction to Ambient | $R_{\theta JA}$ | 62.5 | °C/W | | | Junction Temperature | Tj | 150 | °C | | | Storage Temperature | T _{stg} | -55 ~+150 | | | Notes 1. Repetitive Rating: Pulse width limited by maximum junction temperature - 2. This test is performed with no heat sink at T_a=25°C. - 3. This test is performed with infinite heat sink at T_c =25°C. - 4. E_{AS} condition: T_i =25°C, V_{DD} =40V, V_{GS} =10V,L=0.5mH, R_q =25 Ω . ## Electrical characteristics ($T_a=25^{\circ}C$ unless otherwise noted) | Parameter | Symbol | Test Condition | Min | Тур | Max | Unit | | | | |---|--------------------|---|-----|------|------|-------|--|--|--| | Static characteristics | | | | | | | | | | | Drain-source breakdown voltage | BVDSS | V _G S = 0, I _D =250μA | 85 | | | V | | | | | Gate-threshold voltage (note 1) | VGS(th) | V _{DS} =V _{GS} , I _D =250μA | 2.0 | | 4.0 | | | | | | Zero gate voltage drain current | I _{DSS} | V _{DS} =85V, V _{GS} =0 | | | 1 | μA | | | | | Gate-body leakage current | I _{GSS} | V _{DS} =0, V _{GS} =±20V | | | ±100 | nA | | | | | Drain-source on-state resistance (note 1) | RDS(on) | V _{GS} =10V, I _D =40A | | | 8.5 | mΩ | | | | | Forward transconductance (note 1) | g _{FS} | V _{DS} =10V, I _D =40A | | 60 | | S | | | | | Dynamic characteristics (note 2) | | | | | | | | | | | Input capacitance | C _{iss} | | | 4400 | | pF | | | | | Output capacitance | Coss | V _{DS} =25V,V _{GS} =0,f =1MHz | | 340 | | | | | | | Reverse transfer capacitance | C _{rss} | | | 260 | | | | | | | Switching characteristics (note 2) | | | | | | | | | | | Turn-on delay time | t _{d(on)} | | | 18 | | ns ns | | | | | Rise time | tr | V_{DD} =30V, I_D =2A, R_L =15 Ω , | | 12 | | | | | | | Turn-off delay time | td(off) | V_{GS} =10V, R_{G} =2.5 Ω | | 56 | | | | | | | Fall Time | tf | | | 15 | | | | | | | Total gate charge | Qg | | | 100 | | nC | | | | | Gate-source charge | Q_{gs} | V _{DS} =30V,V _{GS} =10V,I _D =30A | | 20 | | | | | | | Gate-drain charge | Q_{gd} | | | 30 | | | | | | | Source-Drain Diode characteristics | | | | | | | | | | | Diode forward current | Is | | | | 80 | Α | | | | | Diode pulsed forward current | I _{SM} | | | | 320 | Α | | | | | Diode Forward voltage (note 1) | V_{SD} | V _{GS} =0, I _S =40A | | | 1.2 | V | | | | | Diode reverse recovery time (note 2) | t _{rr} | L =75A di/dt=100A/up | | | 36 | ns | | | | | Diode reverse recovery charge (note 2) | Q _{rr} | - I _F =75A,di/dt=100A/μs | | | 56 | nC | | | | Notes: 1. Pulse Test: Pulse Width≤300µs, duty cycle ≤2%. ^{2.} These parameters have no way to verify.