JIANGSU CHANGJIANG ELECTRONICS TECHNOLOGY CO., LTD ## **TO-220-3L Plastic-Encapsulate MOSFETS** #### **CJP12N65** #### **N-Channel Power MOSFET** #### **GENERAL DESCRIPTION** This advanced high voltage MOSFET is designed to stand high energy in the avalanche mode and switch efficiently. This new high energy device also offers a drain-to-source diode fast recovery time. Designed for high voltage, high speed switching applications such as power supplies, converters, power motor controls and bridge circuits. #### **FEATURE** - High Current Rating - Lower R_{DS(on)} - Low Reverse Transfer Capacitance - Fast Switching Capability - Tighter V_{SD} Specifications - Avalanche Energy Specified #### Maximum ratings (T_a=25℃ unless otherwise noted) | Parameter | Symbol | Value | Unit | | |---|------------------|-----------|------------|--| | Drain-Source Voltage | V _{DS} | 650 | V | | | Gate-Source Voltage | V_{GSS} | ±30 | | | | Continuous Drain Current | I _D | 12 | Α | | | Pulsed Drain Current(note1) | I _{DM} | 48 | | | | Single Pulsed Avalanche Energy (note2) | E _{AS} | 540 | mJ | | | Thermal Resistance from Junction to Ambient | $R_{\theta JA}$ | 62.5 | °C/W | | | Junction Temperature | TJ | 150 | | | | Storage Temperature Range | T _{STG} | -55 ~+150 | $^{\circ}$ | | | Maximum lead temperature for soldering purposes , | TL | 260 | | | | 1/8"from case for 5 seconds | _ | | | | ### Electrical characteristics (T_a=25°C unless otherwise noted) | Parameter | Symbol | Test Condition | Min | Тур | Max | Unit | |---|--------------------|--|-----|------|------|------| | Off characteristics | | | | | | | | Drain-source breakdown voltage | V(BR)DSS | V _G S = 0V, I _D =250μA | 650 | | | V | | Zero gate voltage drain current | I _{DSS} | V _{DS} =650V, V _{GS} =0V | | | 1 | μA | | Gate-body leakage current (note3) | I _{GSS} | V _{DS} =0V, V _{GS} =±30V | | | ±100 | nA | | On characteristics (note3) | | | | | | | | Gate-threshold voltage | VGS(th) | V _{DS} =V _{GS} , I _D =250μA | 2.0 | | 4.0 | V | | Static drain-source on-resistance | RDS(on) | V _{GS} =10V, I _D =6A | | | 0.85 | Ω | | Dynamic characteristics (note 4) | • | , | JI. | | | I. | | Input capacitance | C _{iss} | | | 1800 | | pF | | Output capacitance | Coss | V _{DS} =25V,V _{GS} =0V,f =1MHz | | 200 | | | | Reverse transfer capacitance | C _{rss} | | | 25 | | | | Switching characteristics (note1,3 4) | • | | • | | | • | | Total gate charge | Qg | | | 42 | 54 | nC | | Gate-source charge | Q _{gs} | V _{DS} =520V,V _{GS} =10V,I _D =12A | | 8.6 | | | | Gate-drain charge | Q_{gd} | | | 21 | | | | Turn-on delay time | t _{d(on)} | | | 30 | | | | Turn-on rise time | tr | V _{DD} =325V, V _{GS} =10V, | | 90 | | ns | | Turn-off delay time | td(off) | R _G =4.7Ω, I _D =12A | | 160 | | | | Turn-off fall time | t f | | | 90 | | | | Drain-Source Diode Characteristics | • | | • | | | • | | Drain-source diode forward voltage(note3) | VsD | V _G S = 0V, I _S =12A | | | 1.4 | V | | Continuous drain-source diode forward current | Is | | | | 12 | Α | | Pulsed drain-source diode forward current | I _{SM} | | | | 48 | Α | #### Notes: - 1. Repetitive Rating : Pulse width limited by maximum junction temperature - 2. L =7.5mH, I_{AS} = 12A, V_{DD} = 50V, R_G = 25 Ω , Starting T_J = 25 $^{\circ}$ C - 3. Pulse Test : Pulse width≤300µs, duty cycle ≤2%. - 4. These parameters have no way to verify. # **Typical Characteristics** # **CJP12N65**