

JIANGSU CHANGJIANG ELECTRONICS TECHNOLOGY CO., LTD

TO-220-3L Plastic-Encapsulate MOSFETS

CJP02N80

N-Channel Power MOSFET

GENERAL DESCRIPTION

The CJP02N80 is an N-channel mode power MOSFET using advanced technology to provide costomers with planar stripe. This technology specializes in allowing a minimum on-state resistance and superior switching performance. It also can withstand high energy pulse in the avalanche and commutation mode. The CJP02N80 is universally applied in high efficiency switch mode power supply.

FEATURE

- Excellent package for good heat dissipation
- High switching speed
- 100% avalanche tested

APPLICATION

- Power switching application
- DC/DC converters

1. GATE 2. DRAIN 3. SOURCE

Maximum ratings (T_a=25℃ unless otherwise noted)

Parameter	Symbol	Value	Unit	
Drain-Source Voltage	V _{DS}	800	V	
Gate-Source Voltage	V_{GS}	±30		
Continuous Drain Current	I _D	2.4	A	
Pulsed Drain Current	I _{DM}	9.6		
Single Pulsed Avalanche Energy (note1)	E _{AS}	180	mJ	
Thermal Resistance from Junction to Ambient	$R_{\theta JA}$	62.5	°C/W	
Junction Temperature	TJ	150	°C	
Storage Temperature Range	T _{STG}	-55 ~+150		
Maximum lead temperature for soldering purposes , 1/8"from case for 5 seconds	T∟	260		

Electrical characteristics (T_a=25°C unless otherwise noted)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Off characteristics	•					
Drain-source breakdown voltage	V(BR)DSS	V _{GS} = 0V, I _D =250µA	800			V
Zero gate voltage drain current	I _{DSS}	V _{DS} =800V, V _{GS} =0V			10	μA
Gate-body leakage current	I _{GSS}	V_{DS} =0V, V_{GS} = ± 30 V			±100	nA
On characteristics	•			•		
Gate-threshold voltage	VGS(th)	V _{DS} =V _{GS} , I _D =250µA	3		5	V
Static drain-source on-resistance	RDS(on)	V _{GS} =10V, I _D =1.2A			6.3	Ω
Forward transconductance (note2)	g fs	V _{DS} =50V, I _D =1.2A	1.5	2.65		S
Dynamic characteristics (note 3)	1		ı	JI.		
Input capacitance	C _{iss}				550	pF
Output capacitance	C _{oss}	V _{DS} =25V,V _{GS} =0V,f =1MHz			60	
Reverse transfer capacitance	C _{rss}				7	
Switching characteristics (note 2,3)	•			•		
Turn-on delay time	t _{d(on)}				35	ns
Turn-on rise time	tr	\/ -400\/ D -250 L -2.4A			70	
Turn-off delay time	td(off)	V_{DD} =400V, R_{G} =25 Ω , I_{D} =2.4A			60	
Turn-off fall time	tf				65	
Total Gate Charge	Qg				15	nC
Gate-Source Charge	Q _{gs}	V _{DS} =640V,V _{GS} =10V,I _D =2.4A		2.6		nC
Gate-Drain Charge	Q_{gd}			6		nC
Drain-Source Diode Characteristics	•		•	•	•	
Drain-source diode forward voltage	VsD	V _{GS} = 0V, I _S =2.4A			1.4	V
Continuous drain-source diode forward current	Is				2.4	Α
Pulsed drain-source diode forward current	I _{SM}				9.6	Α

Notes:

- 1. I_L =2.4A, V_{DD} =50V, R_G =25 Ω , Starting T_J =25 $^{\circ}$ C.
- 2. Pulse Test : Pulse width≤300µs, duty cycle ≤2%.
- 3. Guaranteed by design, not subject to production