

JIANGSU CHANGJIANG ELECTRONICS TECHNOLOGY CO., LTD

TO-251S Plastic-Encapsulate MOSFETS

CJD02N60

N-Channel Power MOSFET

General Description

The high voltage MOSFET uses an advanced termination scheme to provide enhanced voltage-blocking capability without degrading performance over time. In addition , this advanced MOSFET is designed to withstand high energy in avalanche and commutation modes . The new energy efficient design also offers a drain-to-source diode with a fast recovery time. Designed for high voltage, high speed switching applications in power suppliers, converters and PWM motor controls , these devices are particularly well suited for bridge circuits where diode speed and commutating safe operating areas are critical and offer additional and safety margin against unexpected voltage transients.

FEATURE

- Robust High Voltage Termination
- Avalanche Energy Specified
- Source-to-Drain Diode Recovery Time Comparable to a Discrete Fast Recovery Diode
- Diode is Characterized for Use in Bridge Circuits
- I_{DSS} and V_{DS(on)} Specified at Elevated Temperature

Maximum ratings (T_a=25℃ unless otherwise noted)

Parameter	Symbol	Value	Unit	
Drain-Source Voltage	V_{DS}	600	V	
Gate-Source Voltage	V_{GS}	±20	V	
Continuous Drain Current	I _D	2	A	
Pulsed Drain Current	I _{DM}	8		
Single Pulsed Avalanche Energy*	E _{AS}	128	mJ	
Power Dissipation	P _D	1.25	W	
Thermal Resistance from Junction to Ambient	$R_{\theta JA}$	100	°C/W	
Junction Temperature	TJ	150	°C	
Storage Temperature	T _{stg}	-50 ~+150	€	

^{*}E_{AS} condition: T_i =25°C, V_{DD} =50V,L=64mH, I_{AS} =2A, R_G =25 Ω , Starting T_J = 25°C

Electrical characteristics (T_a=25℃ unless otherwise noted)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit	
Off characteristics			•	•		'	
Drain-source breakdown voltage	V(BR) DSS	V _G S = 0V, I _D =250µA	600			V	
Zero gate voltage drain current	I _{DSS}	V _{DS} =600V, V _{GS} =0V			25		
		V _{DS} =480V, V _{GS} =0V,			100	μΑ	
		T _j =125℃					
Gate-body leakage current	I _{GSS}	V _{DS} =0V, V _{GS} =±20V			±100	nA	
On characteristics (note1)							
Gate-threshold voltage	V _{GS(th)}	V _{DS} =V _{GS} , I _D =250μA	2.0		4.0	V	
Static drain-source on-resistance	RDS(on)	Vgs =10V, ID =1A		3.6	4.4	Ω	
Forward transconductance	g _{FS}	V _{DS} =50V, I _D =1A	1			S	
Dynamic characteristics (note 2)	-		•	•		'	
Input capacitance	C _{iss}), OE), (), O),		435		pF	
Output capacitance	C _{oss}	V _{DS} =25V,V _{GS} =0V, f =1MHz		56			
Reverse transfer capacitance	C _{rss}	- 1 - 11VICIZ		9.2			
Switching characteristics (note 2)							
Total gate charge	Q_g	\/ 400\/ \/ 40\/		40	50	nC	
Gate-source charge	Q _{gs}	V _{DS} =480V, V _{GS} =10V, I _D =2.4A		4.2			
Gate-drain charge	Q_{gd}	1D-2.4A		8.4			
Turn-on delay time	t _{d(on)}			12		ns	
Turn-on rise time	tr	V _{DD} =300V,I _D =2A,		21			
Turn-off delay time	td(off)	V_{GS} =10V, R_{G} =18 Ω		30			
Turn-off fall time	tf	1		24			
Drain-Source Diode Characteristics							
Drain-source diode forward voltage(note1)	V _{SD}	V _{GS} =0V, I _S =2A			1.6	V	
Continuous drain-source diode forward					2	А	
current	I _S						
Pulsed drain-source diode forward current	I _{SM}				8	Α	

Notes:

- 1. Pulse Test : Pulse Width≤300µs, duty cycle ≤2%.
- 2. Guaranteed by design, not subject to production.

Typical Characteristics

CJD02N60

