

Data Sheet

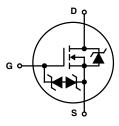
July 1999 File Number 2838.3

2A, 60V, 0.160 Ohm, Logic Level, N-Channel Power MOSFET

The RFW2N06RLE N-Channel, logic level, ESD protected, power MOSFET is manufactured using the MegaFET process. This process, which uses feature sizes approaching those of LSI integrated circuits, gives optimum utilization of silicon, resulting in outstanding performance. The RFW2N06RLE was designed for use with logic level (5V) driving sources in applications such as programmable controllers, automotive switching, switching regulators, switching converters, motor and relay drivers and emitter switches for bipolar transistors. This performance is accomplished through a special gate oxide design which provides full rated conductance at gate biases in the 3V to 5V range, thereby facilitating true on-off power control directly from logic circuit supply voltages.

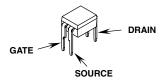
Formerly developmental type TA9861.

Ordering Information


PART NUMBER	PACKAGE	BRAND
RFW2N06RLE	HEXDIP	RFW2N06RLE

NOTE: When ordering, use the entire part number.

Features


- 2A, 60V
- $r_{DS}(on) = 0.160\Omega$
- UIS Rating Curve (Single Pulse)
- Design Optimized For 5 Volt Gate Drive
- Can be Driven Directly from CMOS, NMOS, TTL Circuits
- · Compatible with Automotive Drive Requirements
- SOA is Power Dissipation Limited
- Nanosecond Switching Speeds
- · Linear Transfer Characteristics
- High Input Impedance
- Majority Carrier Device
- Electrostatic Discharge Protected
- Related Literature
 - TB334 "Guidelines for Soldering Surface Mount Components to PC Boards"

Symbol

Packaging

4 PIN HEXDIP

Absolute Maximum Ratings $T_C = 25^{\circ}C$, Unless Otherwise Specified

	RFW2N06RLE	UNITS
Drain to Source Breakdown Voltage (Note 1)V _{DS}	60	V
Drain to Gate Voltage (R_{GS} = 20k Ω) (Note 1)	60	V
Continuous Drain CurrentI _D	2	А
Pulsed Drain Current (Note 3)	14	A
Gate to Source Voltage	-5 to 10	V
Maximum Power Dissipation (Figure 1)	1.09	W
Linear Derating Factor (Figure 1)	0.009	W/ ^o C
Single Pulse Avalanche Energy Rating E _{AS}	Refer to UIS Curve	
Electrostatic Discharge Rating, MIL-STD-883, Catagory B(2)	2	KV
Operating and Storage Temperature	-55 to 150	°C
Maximum Temperature for Soldering		
Leads at 0.063in (1.6mm) from Case for 10sTL	300	°C
Package Body for 10s, See Techbrief 334T _{pkg}	260	°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

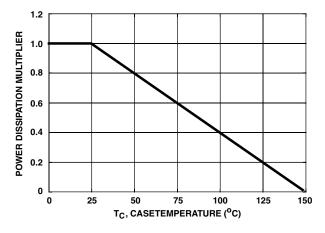
NOTE:

1. $T_J = 25^{\circ}C$ to $125^{\circ}C$.

Electrical Specifications $T_C = 25^{\circ}C$, Unless Otherwise Specified

PARAMETER	SYMBOL	TEST CONDITIONS		MIN	ТҮР	MAX	UNITS
Drain to Source Breakdown Voltage	BV _{DSS}	I _D =250μA, V _{GS} = 0V		60	-	-	V
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = 250 \mu A$		1	-	2	V
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = \text{Rated BV}_{DSS}, V_{GS} = 0V$ $V_{DS} = 0.8 \text{ x Rated BV}_{DSS}, V_{GS} = 0V$ $T_{C} = 125^{\circ}C$		-	-	1	μA
				-	-	25	μA
Gate to Source Leakage Current	I _{GSS}	V _{GS} =-5V to 10V		-	-	±100	nA
Drain to Source On Resistance (Note 2)	rDS(ON)	$I_D = 2A, V_{GS} = 5V \text{ (Figure 8)}$ $I_D = 2A, V_{GS} = 4.3V \text{ (Figure 8)}$		-	-	160	mΩ
				-	-	200	mΩ
Turn-On Time	t _(ON)	$V_{DD} = 30V, I_D = 2A, R_L = 15\Omega, V_{GS} = 5V,$		-	-	100	ns
Turn-On Delay Time	t _{d(ON)}	$R_{G} = 25\Omega$ (Figure	-	13	-	ns	
Rise Time	t _r		-	42	-	ns	
Turn-Off Delay Time	t _{d(OFF)}	-		-	95	-	ns
Fall Time	t _f			-	45	-	ns
Turn-Off Time	t(OFF)				-	200	ns
Total Gate Charge	Q _{g(TOT)}	V _{GS} = 0 to 10V	$V_{DD} = 48V, I_D = 2A,$	-	20	30	nC
Gate Charge at 5V	Q _g (5)	$V_{GS} = 0$ to 5V	$ I_{G(REF)} = 0.5 \text{mA},$ $ R_{I} = 24\Omega$	-	11	16	nC
Threshold Gate Charge	Q _g (TH)	V _{GS} = 0 to 1V	(Figures 12, 15, 16)	-	0.6	1.0	nC
Input Capacitance	C _{ISS}	$V_{DS} = 25V, V_{GS} = 0V, f = 1MHz$ (Figure 11)		-	535	-	pF
Output Capacitance	C _{OSS}			-	175	-	pF
Reverse Transfer Capacitance	C _{RSS}			-	32	-	pF
Thermal Resistance, Junction to Ambient	R _{θJA}			-	-	115	°C/W

Source to Drain Diode Specifications


PARAMETER	SYMBOL	TEST CONDITIONS	MIN	ТҮР	MAX	UNITS
Source to Drain Diode Voltage (Note 2)	V _{SD}	I _{SD} = 2A	-	-	1.2	V
Reverse Recovery Time	t _{rr}	I_{SD} = 2A, dI _{SD} /dt = 100A/µs		-	200	ns

NOTES:

2. Pulse test: width \leq 300 μ s duty cycle \leq 2%.

3. Repetitive rating: pulse width limited by maximum junction temperature.

Typical Performance Curves Unless Otherwise Specified

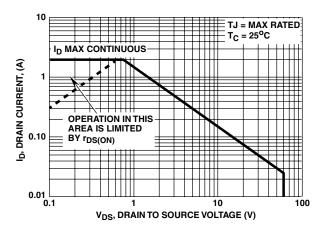


FIGURE 3. FORWARD BIAS SAFE OPERATING AREA

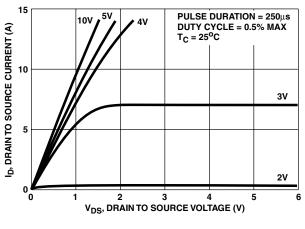


FIGURE 5. SATURATION CHARACTERISTICS

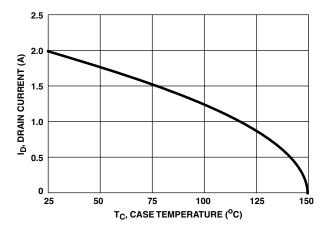


FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE

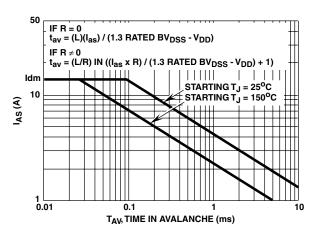


FIGURE 4. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY

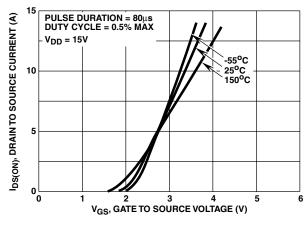
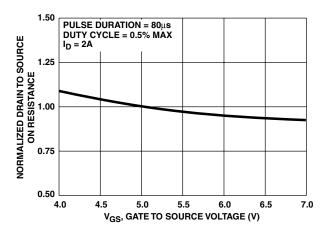



FIGURE 6. TRANSFER CHARACTERISTICS

Typical Performance Curves Unless Otherwise Specified (Continued)

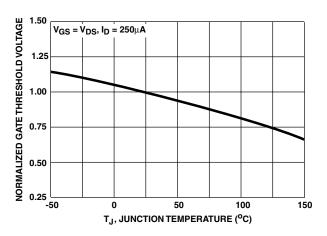


FIGURE 9. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE

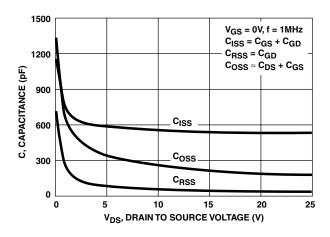


FIGURE 11. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE

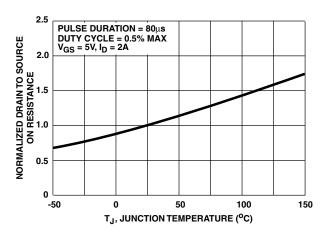


FIGURE 8. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE

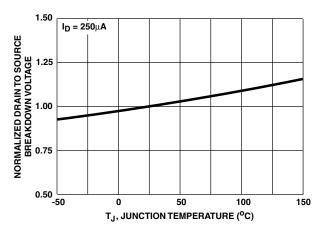
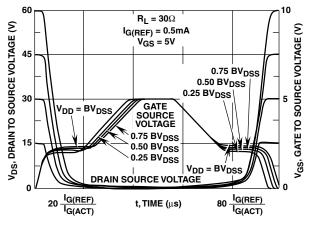



FIGURE 10. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE

NOTE: Refer to Harris Application Notes AN7254 and AN7260. FIGURE 12. NORMALIZED SWITCHING WAVEFORMS FOR CONSTANT GATE CURRENT

Test Circuits and Waveforms

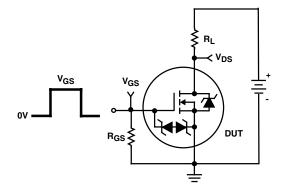


FIGURE 13. SWITCHING TIME TEST CIRCUIT

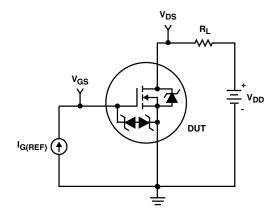


FIGURE 15. GATE CHARGE TEST CIRCUIT

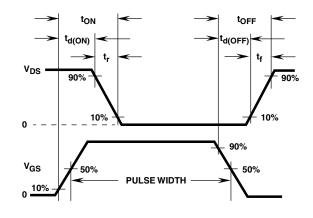


FIGURE 14. RESISTIVE SWITCHING WAVEFORMS

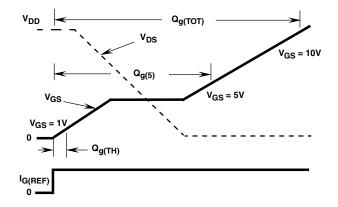


FIGURE 16. GATE CHARGE WAVEFORMS

TRADEMARKS The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks. FAST[®] ACEx™ PACMAN™ SuperSOT[™]-3 FASTr™ POP™ SuperSOT[™]-6 Bottomless™ GlobalOptoisolator™ CoolFET™ PowerTrench ® SuperSOT[™]-8 CROSSVOLT™ GTO™ QFET™ SyncFET™ TinyLogic™ DenseTrench™ HiSeC™ QS™ UHC™ DOME™ ISOPLANAR™ QT Optoelectronics[™] **EcoSPARK**[™] LittleFET™ Quiet Series[™] UltraFET™ SILENT SWITCHER ® VCX™ E²CMOS[™] MicroFET™ EnSigna™ SMART START™ MICROWIRE™ FACT™ OPTOLOGIC™ Star* Power™ **OPTOPLANAR™** Stealth™ FACT Quiet Series™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
	•	Rev. H