

RFP2N20

Data Sheet

July 1999 File Number 2881.2

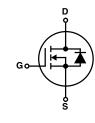
2A, 200V, 3.500 Ohm, N-Channel Power MOSFET

These are N-Channel enhancement mode silicon gate power field effect transistors designed for applications such as switching regulators, switching converters, motor drivers, relay drivers and drivers for high power bipolar switching transistors requiring high speed and low gate drive power. These types can be operated directly from integrated circuits.

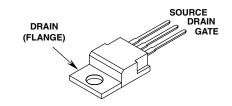
Formerly developmental type TA09289.

Ordering Information

PART NUMBER	PACKAGE	BRAND
RFP2N20	TO-220AB	RFP2N20


NOTE: When ordering, include the entire part number.

Packaging


Features

- 2A, 200V
- r_{DS(ON)} = 3.500Ω

Symbol

Absolute Maximum Ratings T_C = 25° C, Unless Otherwise Specified

	RFP2N20	UNITS
Drain to Source Voltage (Note 1)	200	V
Drain to Gate Voltage (RGS = $20k\Omega$) (Note 1)V _{DGR}	200	V
Continuous Drain CurrentI _D	2	А
Pulsed Drain Current (Note 3)	5	А
Gate to Source Voltage $\ldots \ldots V_{GS}$	±20	V
Maximum Power Dissipation	25	W
Linear Derating Factor	0.2	W/ ^o C
Operating and Storage Temperature	-55 to 150	°C
Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10sT _L Package Body for 10s, See Techbrief 334T _{pkg}	300 260	°C °C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

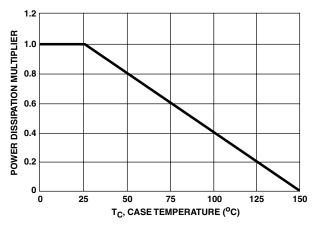
NOTE:

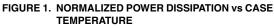
1. $T_J = 25^{\circ}C$ to $125^{\circ}C$.

Electrical Specifications $T_C = 25^{\circ}C$, Unless Otherwise Specified

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	ТҮР	МАХ	UNITS
Drain to Source Breakdown Voltage	BV _{DSS}	I _D = 250μA, V _{GS} = 0	200	-	-	
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$, $I_D = 250 \mu A$, (Figure 8)	2	-	4	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = Rated BV _{DSS}	-	-	1	μA
		$V_{DS} = 0.8 \text{ x}$ Rated BV _{DSS} , T _C = 125 ^o C	-	-	25	μA
Gate to Source Leakage Current	I _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0$	-	-	±100	nA
Drain to Source On Resistance (Note 2)	r _{DS(ON)}	$I_D = 2A, V_{GS} = 10V, (Figures 6, 7)$	-	-	3.500	ΩΩ
Drain to Source On Voltage (Note 2)	V _{DS(ON)}	I _D = 2A, V _{GS} = 10V	-	-	7.0	V
Turn-On Delay Time	t _{d(ON)}	$I_D \approx 1A$, $V_{DD} = 100V$, $R_G = 50\Omega\Omega$	-	15	25	ns
Rise Time	tr	$V_{GS} = 10V, R_L = 96.5\Omega\Omega$ (Figure 10)	-	20	30	ns
Turn-Off Delay Time	t _{d(OFF)}		-	25	40	ns
Fall Time	t _f	-	-	15	25	ns
Input Capacitance	C _{ISS}	$V_{GS} = 0V, V_{DS} = 25V$	-	-	200	pF
Output Capacitance	C _{OSS}	f = 1MHz, (Figure 9)		-	60	pF
Reverse-Transfer Capacitance	C _{RSS}	-	-	-	25	pF
Thermal Resistance Junction to Case	R _{θJC}		-	-	5	°C/W

Source to Drain Diode Specifications


PARAMETER	SYMBOL	TEST CONDITIONS	MIN	ТҮР	MAX	UNITS
Source to Drain Diode Voltage (Note 2)	V _{SD}	I _{SD} = 1A	-	-	1.4	V
Diode Reverse Recovery Time	t _{rr}	I_{SD} = 2A, dI _{SD} /dt = 50A/µs	-	200	-	ns


NOTES:

2. Pulsed test: width \leq 300 μ s duty cycle \leq 2%.

3. Repetitive rating: pulse width limited by maximum junction temperature.

Typical Performance Curves Unless Otherwise Specified

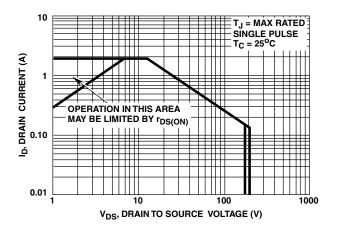


FIGURE 3. FORWARD BIAS SAFE OPERATING AREA

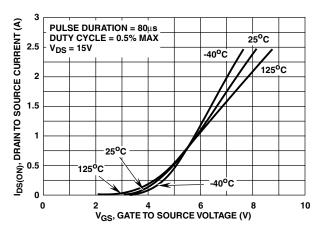


FIGURE 5. TRANSFER CHARACTERISTICS

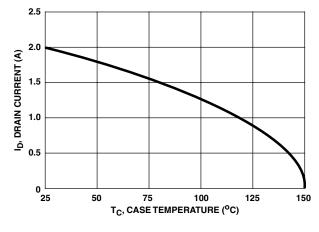
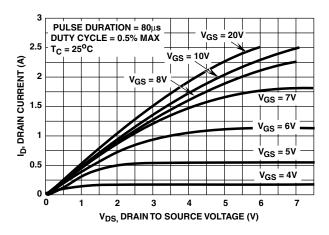



FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE

FIGURE 4. SATURATION CHARACTERISTICS

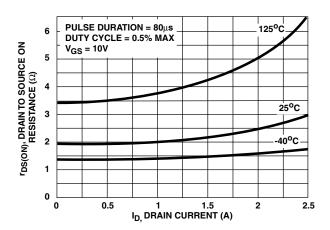


FIGURE 6. DRAIN TO SOURCE ON RESISTANCE vs DRAIN CURRENT

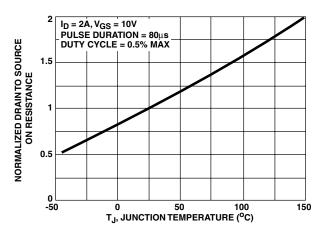


FIGURE 7. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE

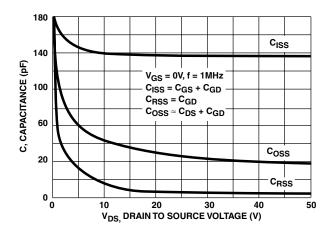


FIGURE 9. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE

Test Circuits and Waveforms

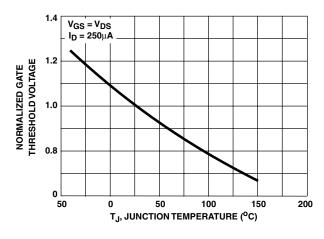
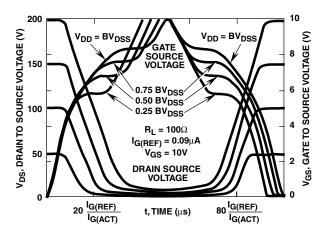



FIGURE 8. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE

NOTE: Refer to Intersil Applications Notes AN7254 and AN7260 FIGURE 10. NORMALIZED SWITCHING WAVEFORMS FOR CONSTANT GATE CURRENT

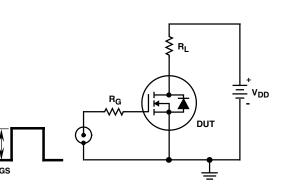


FIGURE 11. SWITCHING TIME TEST CIRCUIT

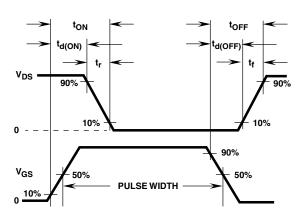


FIGURE 12. RESISTIVE SWITCHING WAVEFORMS

Test Circuits and Waveforms

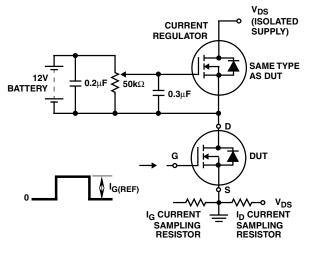
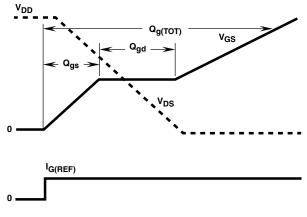



FIGURE 13. GATE CHARGE TEST CIRCUIT

TRADEMARKS The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks. FAST[®] ACEx™ PACMAN™ SuperSOT[™]-3 FASTr™ POP™ SuperSOT[™]-6 Bottomless™ GlobalOptoisolator™ CoolFET™ PowerTrench ® SuperSOT[™]-8 CROSSVOLT™ GTO™ QFET™ SyncFET™ TinyLogic™ DenseTrench™ HiSeC™ QS™ UHC™ DOME™ ISOPLANAR™ QT Optoelectronics[™] EcoSPARK™ LittleFET™ Quiet Series[™] UltraFET™ SILENT SWITCHER ® VCX™ E²CMOS[™] MicroFET™ EnSigna™ SMART START™ MICROWIRE™ FACT™ OPTOLOGIC™ Star* Power™ **OPTOPLANAR™** Stealth™ FACT Quiet Series™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
	•	Rev. H