
New Generation N-Ch Power MOSFET

HIGH SPEED SWITCHING APPLICATION

Features

- Low drain-source On resistance: $R_{DS(on)}=1.1\Omega$ (Typ.)
- Low gate charge: Q_g=18nC (Typ.)
- Low reverse transfer capacitance: Crss=5.5pF (Typ.)
- RoHS compliant device
- 100% avalanche tested

Ordering Information

TO-220F-3L

Part Number	Marking	Package
SUN0765F	SUN0765	TO-220F-3L

Marking Information

0
AUK
©∆YMDD
SUN0765 O

Column 1: Manufacturer Column 2: Production Information e.g.) $\bigcirc \triangle YMDD$

-. ©: Option Code (H: Halogen Free)

-. △: Factory Management Code

-. YMDD: Date Code (Year, Month, Date)

Column 3: Device Code

Absolute maximum ratings (Tc=25°C unless otherwise noted)

Characteristic	Symbol		Symbol Rating					
Drain-source voltage	V _{DSS}		650	۷				
Gate-source voltage	V _{GSS}		V _{GSS}		V _{GSS}		±30	۷
Drain current (DC) *		T _c =25°C	7	А				
	I _D	T _c =100°C	4.43	А				
Drain current (Pulsed) *	I _{DM}		28	А				
Single avalanche energy ^(Note 2)	E _{AS}		92.9	mJ				
Repetitive avalanche current (Note 1)	I _{AR}		7	А				
Repetitive avalanche energy (Note 1)	E _{AR}		3.2	mJ				
Power dissipation	P _D		P _D		32	W		
Junction temperature	TJ		TJ		150	°C		
Storage temperature range	T _{stg}		T _{stg}		-55~150	°C		

* Limited only maximum junction temperature

Thermal Characteristics

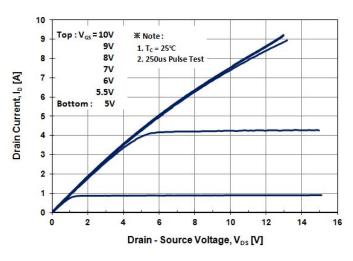
Characteristic	Symbol	Rating	Unit
Thermal resistance, junction to case	$R_{th(j-c)}$	Max. 3.9	or m
Thermal resistance, junction to ambient	$R_{th(j-a)}$	Max. 62.5	°C/W

Electrical Characteristics (Tc=25°C unless otherwise noted)

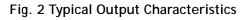
Characteristic	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Drain-source breakdown voltage	BV _{DSS}	I _D =250uA, V _{GS} =0	650	-	-	V
Gate threshold voltage	$V_{GS(th)}$	$I_D=250uA, V_{DS}=V_{GS}$	3	-	5	V
Drain-source cut-off current		V_{DS} =650V, V_{GS} =0V	-	-	1	uA
Drain-source cut-on current	I _{DSS}	V _{DS} =650V, T _c =150°C	-	-	100	uA
Gate leakage current	I _{GSS}	V _{DS} =0V, V _{GS} =±30V	-	-	±100	nA
Drain-source on-resistance	R _{DS(ON)}	V _{GS} =10V, I _D =3.5A	-	1.1	1.4	Ω
Forward transfer conductance (Note 3)	g _{fs}	V _{DS} =10V, I _D =3.5A	-	8.7	-	S
Input capacitance	C _{iss}		-	1385	-	pF
Output capacitance	C _{oss}	V _{DS} =25V, V _{GS} =0V, f=1.0MHz	-	102	-	
Reverse transfer capacitance	C _{rss}		-	5.5	-	
Turn-on delay time (Note 3,4)	t _{d(on)}		-	60	-	
Rise time (Note 3,4)	t _r	V _{DS} =325V, I _D =7A,	-	32	-	- ns
Turn-off delay time (Note 3,4)	t _{d(off)}	$R_{G}=25\Omega$	-	113	-	
Fall time (Note 3,4)	t _f		-	22	-	
Total gate charge ^(Note 3,4)	Qg		-	18	23	
Gate-source charge (Note 3,4)	Q _{gs}	V_{DS} =520V, V_{GS} =10V, I_D =7A	-	7	-	nC
Gate-drain charge (Note 3,4)	Q _{gd}		-	3	-	1

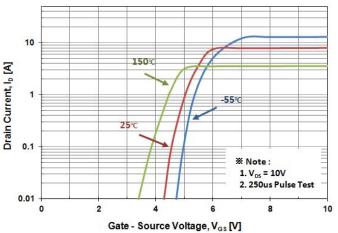
Source-Drain Diode Ratings and Characteristics (Tc=25°C unless otherwise noted)

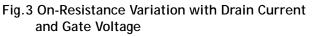
Characteristic	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Source current (DC)	ls	Integral reverse diode	-	-	7	А
Source current (Pulsed)	I _{SM}	in the MOSFET	-	-	28	А
Forward voltage	V _{SD}	$V_{GS}=0V$, $I_{SD}=7A$	-	-	1.4	۷
Reverse recovery time (Note 3,4)	t _{rr}	I _{SD} =7A, V _{GS} =0V	-	410	-	ns
Reverse recovery charge (Note 3,4)	Q _{rr}	dl _F /dt=100A/us	-	1.7	-	uC

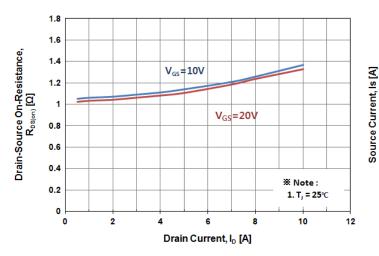

Note:

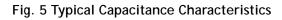
1. Repeated rating: Pulse width limited by safe operating area


2. L=3.5mH, I_{AS} =7A, V_{DD} =50V, R_G =25 Ω , Starting T_J =25°C 3. Pulse test: Pulse width≤300us, Duty cycle≤2%


4. Essentially independent of operating temperature typical characteristics


Typical Electrical Characteristics Curves




Fig. 1 Typical Output Characteristics

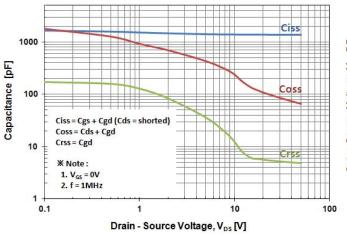


Fig. 4 Body Diode Forward Voltage Variation with Source Current

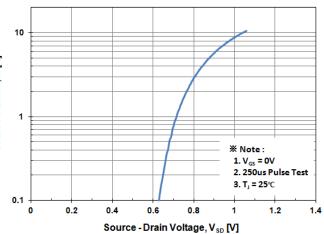
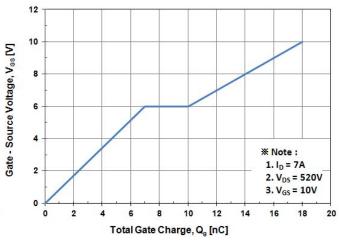



Fig. 6 Typical Total Gate Charge Characteristics

※ Note :

125

1. V_{GS} = 10V

2. I_D = 3.5A

150

175

Fig. 7 Breakdown Voltage Variation vs. Temperature

Fig. 8 On-Resistance Variation vs. Temperature

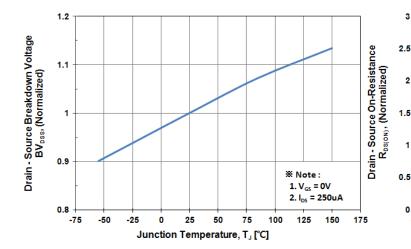
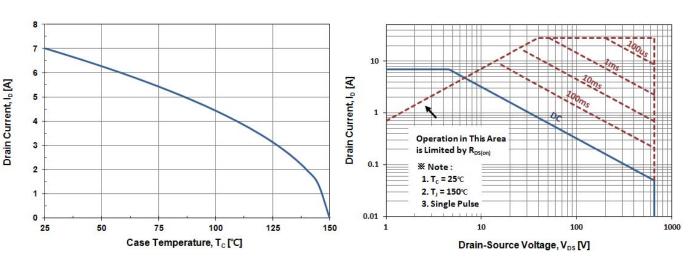


Fig. 9 Maximum Drain Current vs. Case Temperature

25


Junction Temperature, T_J [°C]

50

75

100

0

3

2

1

0

-75

-50

-25

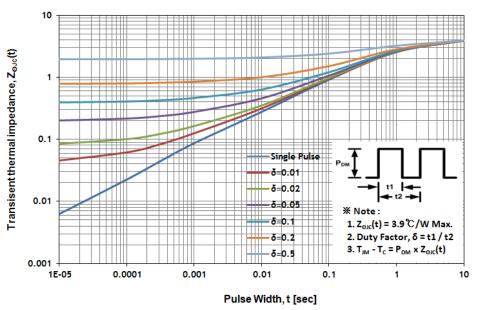
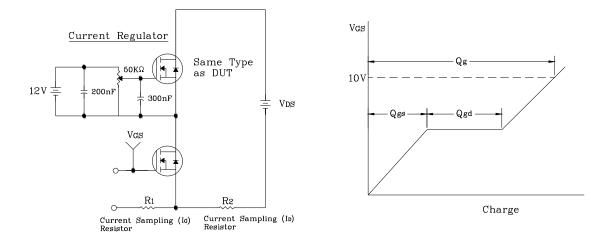



Fig. 12 Gate Charge Test Circuit & Waveform

Fig. 13 Resistive Switching Test Circuit & Waveform

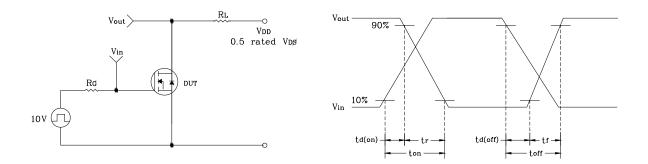
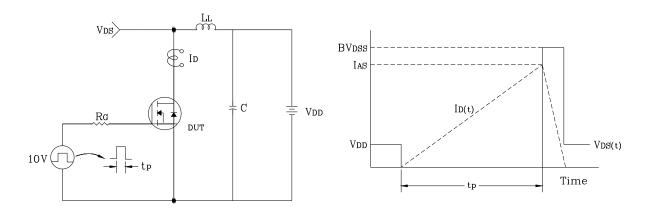
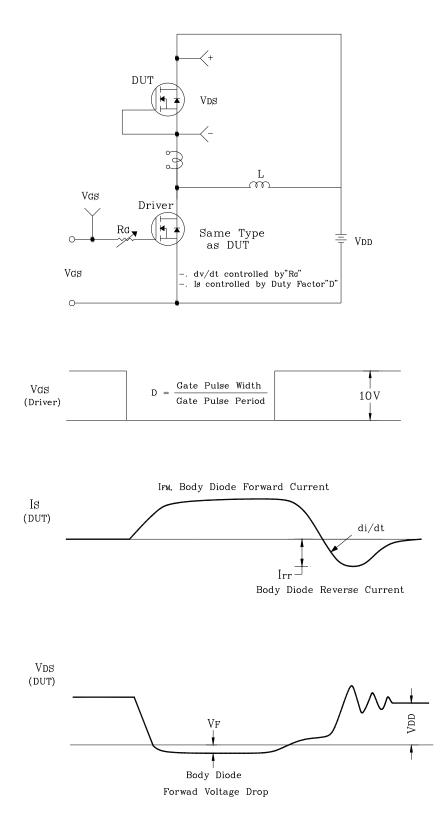
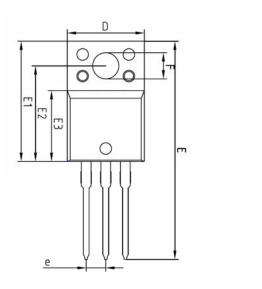
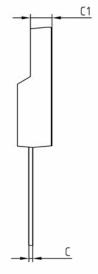
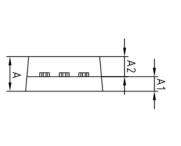
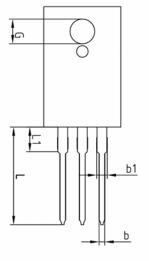


Fig. 14 E_{AS} Test Circuit & Waveform


Fig. 15 Diode Reverse Recovery Time Test Circuit & Waveform



Package Outline Dimensions

		MILLIMETERS				
SYMBOL	MINIMUM	NOMINAL	MAXIMUM	NOTE		
Α	-	-	4.60			
A1	2.45	2.50	2.55			
A2	1.95	2.00	2.05			
b	0.65	0.75	0.85			
b1	1.07	1.27	1.47			
С	0.40	0.50	0.60			
C1	2.70	2.80	2.90			
D	9.90	10.00	10.10			
E	28.00	-	28.60			
E1	15.50	15.60	15.70			
E2	12.30	12.40	12.50			
E3	9.15	9.20	9.25			
F	3.30	3.40	3.50			
G	3.10	3.20 2.54 BS	3.30			
е						
L	12.40	-	13.00			
L1						

The AUK Corp. products are intended for the use as components in general electronic equipment (Office and communication equipment, measuring equipment, home appliance, etc.).

Please make sure that you consult with us before you use these AUK Corp. products in equipments which require high quality and / or reliability, and in equipments which could have major impact to the welfare of human life(atomic energy control, airplane, spaceship, transportation, combustion control, all types of safety device, etc.). AUK Corp. cannot accept liability to any damage which may occur in case these AUK Corp. products were used in the mentioned equipments without prior consultation with AUK Corp..

Specifications mentioned in this publication are subject to change without notice.