COMPLIANT

Vishay Semiconductors

Power MOSFET, 57 A

SOT-227

PRODUCT SUMMARY				
V_{DSS}	500 V			
R _{DS(on)}	Ω 80.0			
I _D	57 A			
Туре	Modules - MOSFET			
Package	SOT-227			

FEATURES

- · Fully isolated package
- · Easy to use and parallel
- Low on-resistance
- Dynamic dV/dt rating
- Fully avalanche rated
- Simple drive requirements
- · Low gate charge device
- Low drain to case capacitance
- Low internal inductance
- Designed for industrial level

 Material categorization: For definitions of compliance please see <u>www.vishav.com/doc?99912</u>

DESCRIPTION

Third Generation Power MOSFETs from Vishay HPP provide the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost-effectiveness.

The SOT-227 package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 500 W. The low thermal resistance of the SOT-227 contribute to its wide acceptance throughout the industry.

PARAMETER	SYMBOL	TEST CONDITIONS	MAX.	UNITS	
Continuous drain current at V _{GS} 10 V		T _C = 25 °C	57		
	Ι _D	T _C = 100 °C	36	Α	
Pulsed drain current	I _{DM} ⁽¹⁾		228		
Power dissipation	P_D	T _C = 25 °C	625	W	
Linear derating factor			5.0	W/°C	
Gate to source voltage	V_{GS}		± 20	V	
Single pulse avalanche energy	E _{AS} (2)		725	mJ	
Avalanche current	I _{AR} (1)		57	Α	
Repetitive avalanche energy	E _{AR} (1)		62.5	mJ	
Peak diode recovery dV/dt	dV/dt (3)		10	V/ns	
Operating junction and storage temperature range	T _J , T _{Stg}		- 55 to + 150	°C	
Insulation withstand voltage (AC-RMS)	V _{ISO}		2.5	kV	
Mounting torque		M4 screw	1.3	Nm	

Notes

- (1) Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11)
- $^{(2)}$ Starting $T_J=25~^{\circ}C,\,L=446~\mu\text{H},\,R_g=25~\Omega,\,I_{AS}=57~A$ (see fig. 12)
- $^{(3)}$ $I_{SD} \leq 57$ A, dI/dt ≤ 200 A/µs, $V_{DD} \leq V_{(BR)DSS}, \, T_{J} \leq 150 \,\, ^{\circ}\text{C}$

THERMAL RESISTANCE				
PARAMETER	SYMBOL	TYP.	MAX.	UNITS
Junction to case	R _{thJC}	-	0.20	°C/W
Case to sink, flat, greased surface	R _{thCS}	0.05	-	C/VV

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Drain to source breakdown voltage	V _{(BR)DSS}	V _{GS} = 0 V, I _D = 1.0 mA	500	-	-	V
Breakdown voltage temperature coefficient	$\Delta V_{(BR)DSS}/\Delta T_J$	Reference to 25 °C, I _D = 1 mA	-	0.62	-	V/°C
Static drain to source on-resistance	R _{DS(on)} (1)	V _{GS} = 10 V, I _D = 34 A	-	-	0.08	Ω
Gate threshold voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2.0	-	4.0	V
Forward transconductance	9 _{fs}	V _{DS} = 50 V, I _D = 34 A	43	-	-	S
Dunin to account leaders a comment		V _{DS} = 500 V, V _{GS} = 0 V	-	-	50	
Drain to source leakage current	I _{DSS}	V _{DS} = 400 V, V _{GS} = 0 V, T _J = 125 °C		-	500	μA
Gate to source forward leakage		V _{GS} = 20 V	-	-	200	^
Gate to source reverse leakage	I _{GSS}	V _{GS} = - 20 V		-	- 200	nA
Total gate charge	Q_g	In = 57 A	-	225	338	
Gate to source charge	Q _{gs}	V _{DS} = 400 V V _{GS} = 10 V; see fig. 6 and 13 ⁽¹⁾		51	77	nC
Gate to drain ("Miller") charge	Q _{gd}			98	147	
Turn-on delay time	t _{d(on)}	V _{DD} = 250 V	-	32	-	
Rise time	t _r	I _D = 57 A	-	152	-	
Turn-off delay time	t _{d(off)}	$R_g = 2.0 \Omega$ (internal)	-	108	-	ns
Fall time	t _f	$R_D = 4.3 \Omega$, see fig. 10 ⁽¹⁾	-	118	-	1
Internal source inductance	L _S	Between lead, and center of die contact	-	5.0	-	nΗ
Input capacitance	C _{iss}	V _{GS} = 0 V	-	10 000	-	
Output capacitance	C _{oss}	V _{DS} = 25 V	-	1500	-	pF
Reverse transfer capacitance	C _{rss}	f = 1.0 MHz, see fig. 5	-	50	-	

Note

 $^{^{(1)}~}$ Pulse width $\leq 300~\mu s,~duty~cycle \leq 2~\%$

SOURCE-DRAIN RATINGS AND CHARACTERISTICS						
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Continuous source current (body diode)	I _S	MOSFET symbol showing	i	-	57	
Pulsed source current (body diode)	I _{SM} ⁽¹⁾	the integral reverse p-n junction diode.	-	-	228	A
Diode forward voltage	V _{SD} (2)	T _J = 25 °C, I _S = 57 A, V _{GS} = 0 V	-	=.	1.3	٧
Reverse recovery time	t _{rr}	$T_J = 25 ^{\circ}\text{C}, \ I_F = 57 \text{A}, \ \text{dI/dt} = 100 \text{A/}\mu\text{s}^{(2)}$	-	901	1351	ns
Reverse recovery charge	Q _{rr}	1 ₁ = 25 °C, 1 _F = 57 A, αι/αι = 100 A/μs ↔	-	15	23	μC
Forward turn-on time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by $L_S + L_D$)				

Notes

⁽¹⁾ Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11)

 $^{^{(2)}}$ Pulse width $\leq 300~\mu s,~duty~cycle \leq 2~\%$

www.vishay.com

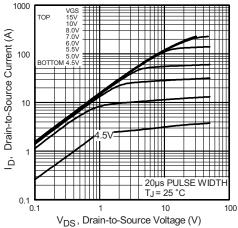


Fig. 1 - Typical Output Characteristics

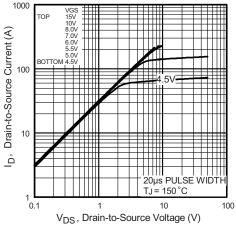
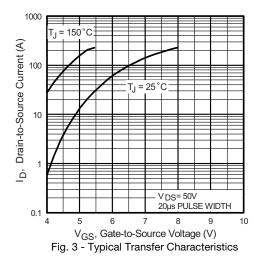



Fig. 2 - Typical Output Characteristics

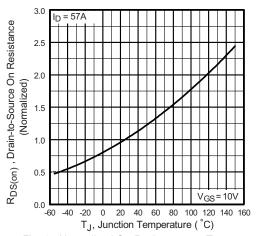


Fig. 4 - Normalized On-Resistance vs. Temperature

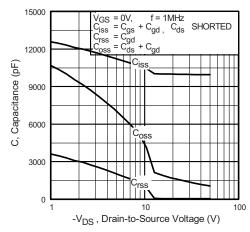


Fig. 5 - Typical Capacitance vs. Drain to Source Voltage

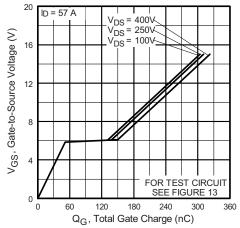


Fig. 6 - Typical Gate Charge vs. Gate to Source Voltage

www.vishay.com

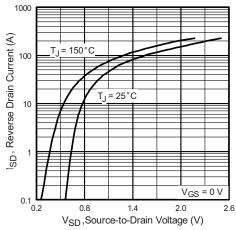


Fig. 7 - Typical Source Drain Diode Forward Voltage

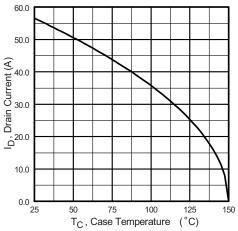


Fig. 9 - Maximum Drain Current vs. Case Temperature

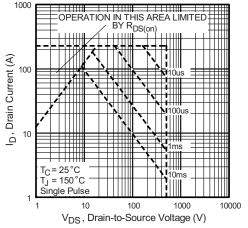


Fig. 8 - Maximum Safe Operating Area

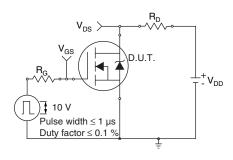


Fig. 10a - Switching Time Test Circuit

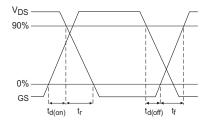


Fig. 10b - Switching Time Waveforms

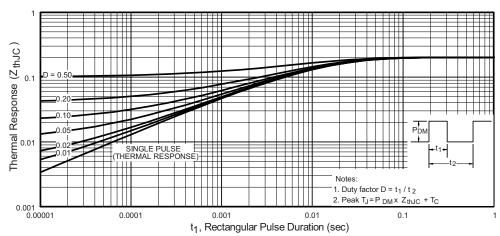


Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction to Case

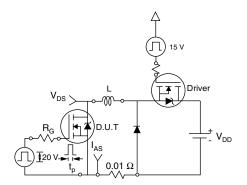


Fig. 12a - Unclamped Inductive Test Circuit

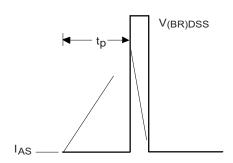


Fig. 12b - Unclamped Inductive Waveforms

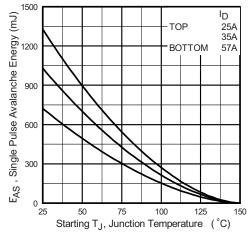


Fig. 12c - Maximum Avalanche Energy vs. Drain Current

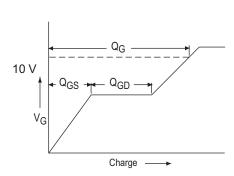


Fig. 13a - Basic Gate Charge Waveform

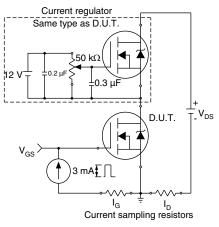


Fig. 13b - Gate Charge Test Circuit

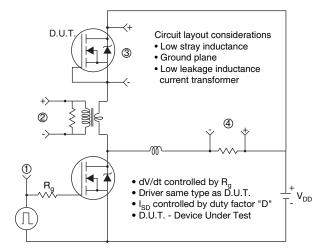


Fig. 13c - Peak Diode Recovery dV/dt Test Circuit

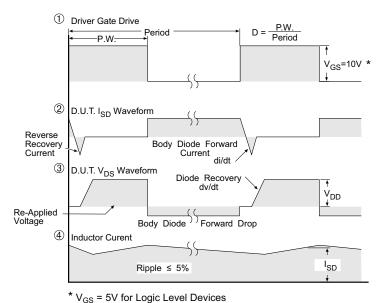
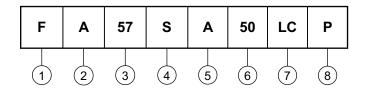
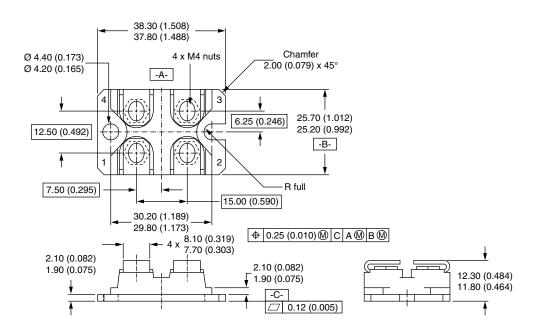



Fig. 14 - For N-Channel Power MOSFETs

ORDERING INFORMATION TABLE

Device code

- 1 Power MOSFET
- 2 Generation 3, MOSFET silicon, DBC construction
- 3 Current rating (57 = 57 A)
- Single switch (see Circuit Configuration table)
- 5 SOT-227
- 6 Voltage rating (50 = 500 V)
- 7 Low charge
- 8 P = Lead (Pb)-free


CIRCUIT CONFIGURATION						
CIRCUIT	CIRCUIT CONFIGURATION CODE	CIRCUIT DRAWING				
Single switch no diode	S	G (2) Lead assignment S D 4 1 S G				

LINKS TO RELATED DOCUMENTS				
Dimensions <u>www.vishay.com/doc?95036</u>				
Packaging information	www.vishay.com/doc?95037			

SOT-227

DIMENSIONS in millimeters (inches)

Notes

- Dimensioning and tolerancing per ANSI Y14.5M-1982
- · Controlling dimension: millimeter

Document Number: 95036 Revision: 28-Aug-07

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.

Revision: 02-Oct-12 Document Number: 91000