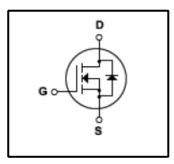
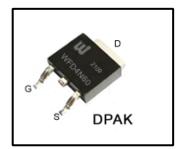


WFD4N60


Silicon N-Channel MOSFET


Features

- 4A,600V.R_{DS(on)}(Max 2.5Ω)@V_{GS}=10V
- Ultra-low Gate Charge(Typical 16nC)
- Fast Switching Capability
- 100%Avalanche Tested
- Isolation Voltage (VISO = 4000V AC)
- Maximum Junction Temperature Range(150°C)

General Description

This Power MOSFET is produced using Winsemi's advanced Planar stripe, DMOS technology. This latest technology has Been Especially designed to minimize on-state resistance, have a high Rugged avalanche characteristics. This devices is specially well Suited for half bridge and full bridge resonant topology line a Electronic lamp ballast.

Symbol	Parameter	Value	Units	
VDSS	Drain Source Voltage	600	V	
lo	Continuous Drain Current(@Tc=25°C)	4	A	
U	Continuous Drain Current(@Tc=100℃)	2.5	A	
IDM	Drain Current Pulsed (Note	1) 16	A	
Vgs	Gate to Source Voltage	±30	V	
Eas	Single Pulsed Avalanche Energy (Note	2) 240	mJ	
Ear	Repetitive Avalanche Energy (Note	1) 10	mJ	
dv/dt	Peak Diode Recovery dv/dt (Note	3) 4.5	V/ns	
Pp	Total Power Dissipation(@Tc=25℃)	80	w	
PD	Derating Factor above 25℃	0.78	W/°C	
TJ, Tstg	Junction and Storage Temperature	-55~150	°C	
T∟	Channel Temperature	300	°C	

Absolute Maximum Ratings

Thermal Characteristics

Symbol	Parameter		Value	Lipito	
Symbol		Min	Тур	Max	Units
Rajc	Thermal Resistance, Junction-to-Case	-	-	1.56	°C/W
Rqja	Thermal Resistance, Junction-to-Ambient*			50	
Rqja	Thermal Resistance, Junction-to-Ambient	-	-	110	°C/W

*When mounted on the minimum pad size recommended(PCB Mount)

Charac	teristics	Symbol	Test Condition	Min	Туре	Max	Unit
Gate leakage current		lgss	V_{GS} = \pm 30 V, V_{DS} = 0 V	-	-	±100	nA
Gate-source bre	ate-source breakdown voltage		I_G = $\pm 10 \ \mu$ A, V_{DS} = 0 V	±30	-	-	V
Drain cut-off current		loss	V _{DS} = 600 V, V _{GS} = 0 V	-	-	10	μA
		IDSS	V _{DS} = 480 V, T _c = 125°C	-	-	100	μA
Drain-source bre	eakdown voltage	V(BR)DSS	ID = 250 μA, VGS = 0 V	600	-	-	V
Gate threshold voltage		VGS(th)	V _{DS} = 10 V, I _D =250 μA	2	-	4	V
Drain-source ON	I resistance	RDS(ON)	Vgs = 10 V, Id =3.25A	-	1.8	2.5	Ω
Input capacitance		Ciss	V _{DS} = 25 V,	-	710	920	
Reverse transfer capacitance		Crss	V _{GS} = 0 V,	-	14	19	pF
Output capacitar	Output capacitance		f = 1 MHz	-	65	85	
	Rise time	tr	V _{DD} =300 V,	-	55	120	
	Turn-on time	ton	I _D = 4.4 A	-	20	50	
Switching time	Fall time	tf	Rg=25 Ω	-	55	120	ns
	Turn-off time	toff	(Note4,5)	-	70	150	
Total gate charge (gate-source			V _{DD} = 480 V,		10		
plus gate-drain)		Qg	V _{GS} = 10 V,	-	16	20	-
Gate-source charge		Qgs	I _D =4.4A	-	3.4	-	nC
Gate-drain ("miller") Charge		Qgd	(Note4,5)	-	7	-	

Electrical Characteristics (Tc = 25° C)

Source–Drain Ratings and Characteristics (Ta = 25° C)

Characteristics	Symbol	Test Condition	Min	Туре	Max	Unit
Continuous drain reverse current	ldr	-	-	-	4	А
Pulse drain reverse current	IDRP	-	-	-	17.6	А
Forward voltage (diode)	VDSF	Idr =4.4 A, Vgs = 0 V	-	-	1.4	V
Reverse recovery time	trr	I _{DR} = 4.4 A, V _{GS} = 0 V,	-	390	-	ns
Reverse recovery charge	Qrr	dlɒʀ / dt = 100 Α / μs	-	2.2	-	μC

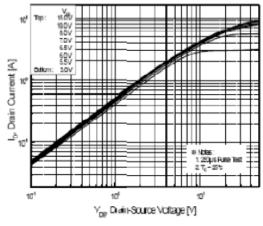
Note 1.Repeativity rating :pulse width limited by junction temperature

 $2.L{=}18.5mH, I_{AS}{=}4.4A, V_{DD}{=}50V, R_{G}{=}0\Omega, Starting \ T_{J}{=}25^{\circ}\!C$

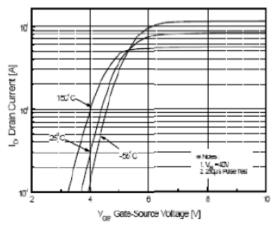
3.I_{SD}≤4A,di/dt≤200A/us, V_{DD}<BV_{DSS},STARTING T_J=25 °C

4.Pulse Test: Pulse Width≤300us,Duty Cycle≤2%

5.Essentially independent of operating temperature.


This transistor is an electrostatic sensitive device

Please handle with caution



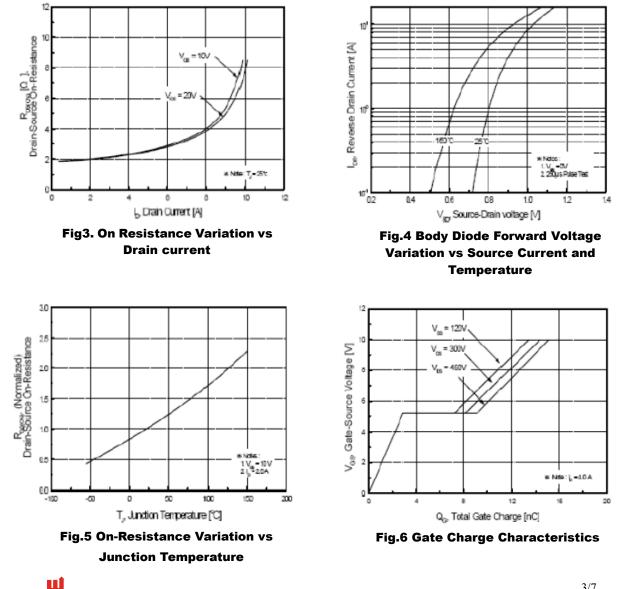

WFD4N60

Fig.1 On-State Characteristics

Fig.2 Transfer Current characteristics

Steady, keep you advance

ШÎ

WFD4N60

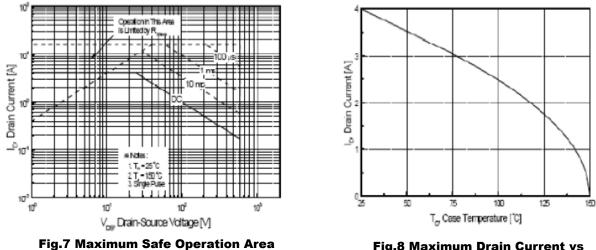


Fig.8 Maximum Drain Current vs **Case Temperature**

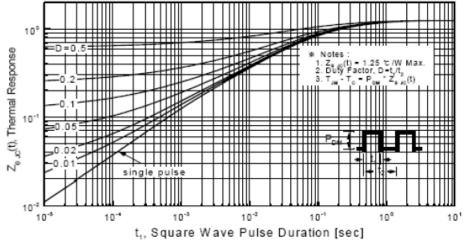
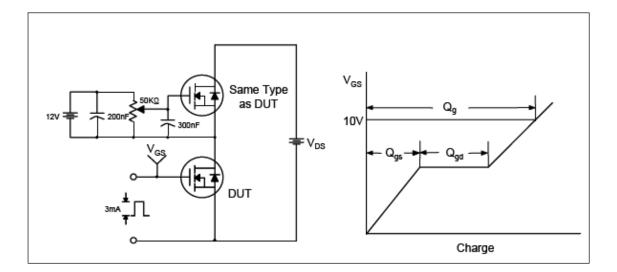



Fig.9 Transient Thermal Response curve

ШÎ

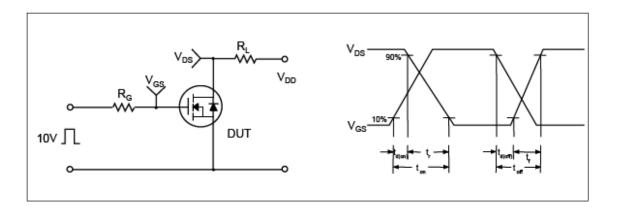


Fig.11 Resistive Switching Test Circuit & Waveform

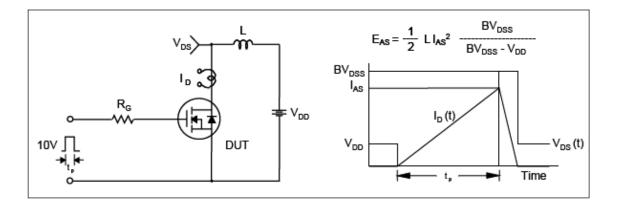
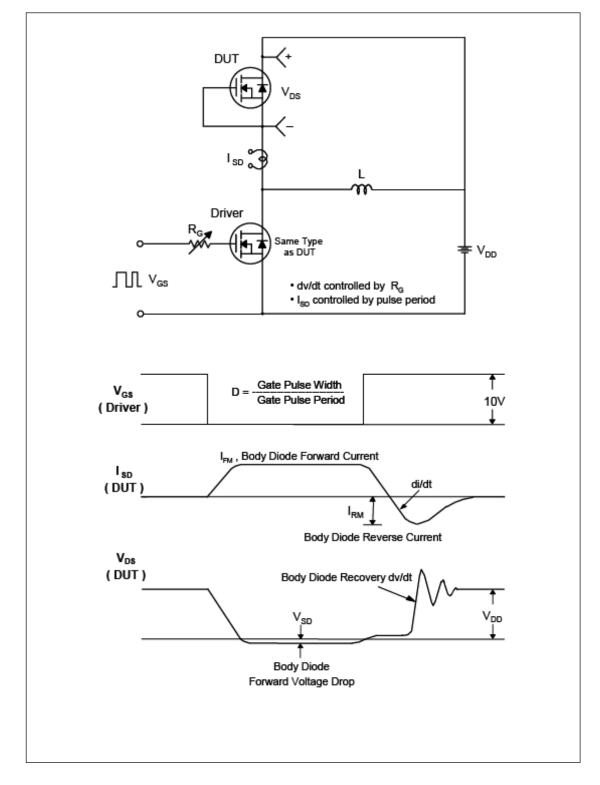
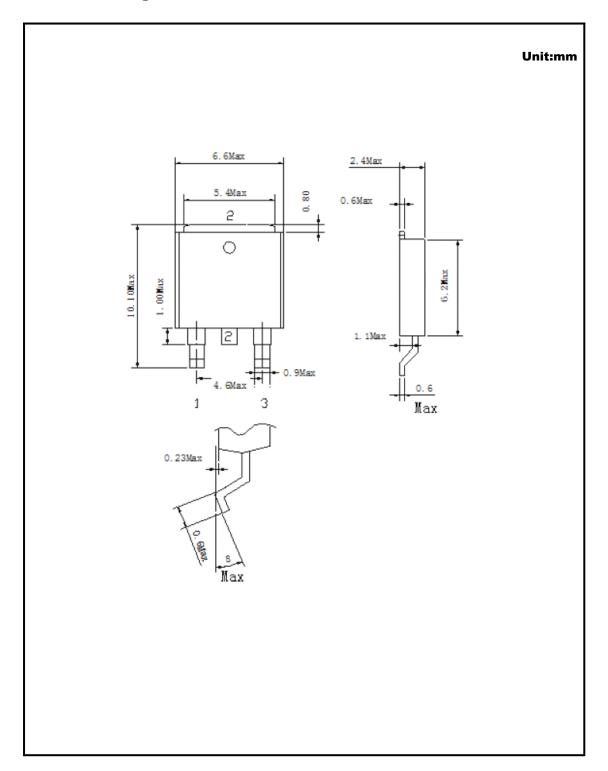


Fig.12 Unclamped Inductive Switching Test Circuit & Waveform




Fig.13 Peak Diode Recovery dv/dt Test Circuit & Waveform

W

WFD4N60

TO-252 Package Dimension

