

3 Drain

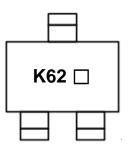
N-Channel Enhancement Mode MOSFET

SOT-323

High Speed Switching Application

Features

- Low On-Resistance
- Low Threshold: Typ. 1.3V
- Low Input Capacitance: 26pF
- Fast Swtiching Speed
- ESD Protected


Applications

• Ultra high speed switching application

Ordering Information

Part Number	Marking Code	Package	Packaging
STK0602U	K62 🗆	SOT-323	Tape & Reel

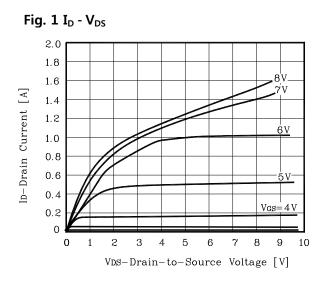
Marking Information

K62 = Specific Device Code

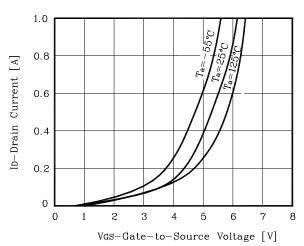
□ = Year & Week Code Marking

Absolute Maximum Ratings (T_{amb}=25°C, Unless otherwise specified)

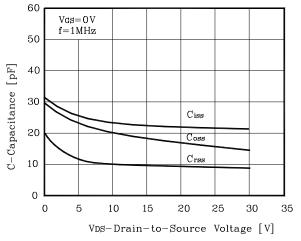
Characteristic	Symbol	Ratings	Unit
Drain-Source voltage	V _{DSS}	60	V
Gate-Source voltage	V _{GS}	±8	V
Maximum drain current	Ι _D	200	mA
Pulsed drain current ¹⁾	I _{DP}	800	mA
Operating junction temperature	Tj	150	°C
Storage temperature range	T _{stg}	-55 ~ 150	°C
Power dissipation ²⁾	P _D	200	mW

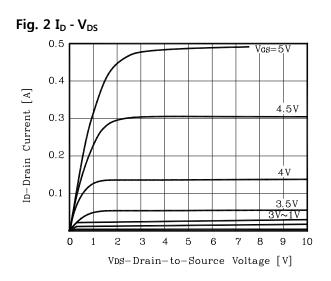

¹⁾ PW \leq 10 μ s, Duty cycle \leq 1%

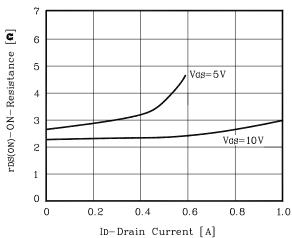
²⁾ Device mounted on FR-4 board with recommended pad layout.

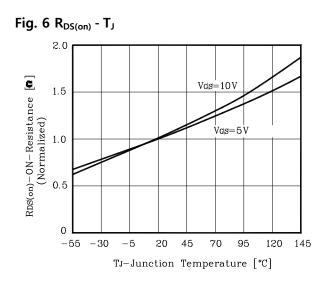

Characteristic	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Drian-Source breakdown voltage	BV _{DSS}	I _D =10μA, V _{GS} =0	60	-	-	V
Gate-Threshold voltage	V _{GS(th)}	$I_D=1\mu A, V_{DS}=5V$	0.8	-	1.8	V
Zero Gate voltage drain current	I _{DSS}	V _{DS} =60V, V _{GS} =0	-	-	1.0	μΑ
Gate-body leakage	I _{GSS}	V_{DS} =0V, V_{GS} =±6V	-	-	±1.0	μΑ
Drain-Source on-resistance ³⁾	R _{DS(ON)}	V _{GS} =5V, I _D =10mA	-	2.5	6.0	Ω
		V _{GS} =10V, I _D =10mA	-	2.0	4.0	
Forward trans-conductance	g _{fs}	V _{DS} =5V, I _D =20mA	20	65	-	mS
Input capacitance	C _{iss}	V _{DS} =5V, V _{GS} =0, f=1MHz	-	26	-	pF
Output capacitance	C _{oss}		-	20	-	
Reverse Transfer capacitance	C _{rss}		-	10	-	
Turn-on delay time	t _{d(on)}	V_{DD} =5V, I_D =10mA, V_{GS} =5V, R_L =500 Ω		150		
Rise time	t _r			240		ns
Turn-off delay time	t _{d(off)}		-	200	-	
Fall time	t _f]	-	300	-	

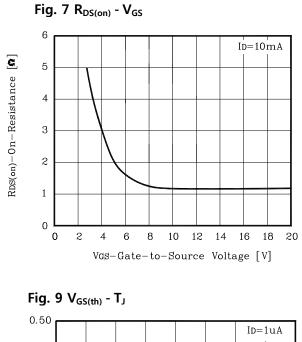
 $^{3)}$ Pulse test: $t_{P}{\leq}300{\mu}{s},$ Duty cycle ${\leq}1\%$


Electrical Characteristic Curves









Electrical Characteristic Curves (Continue)

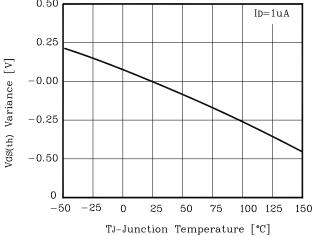
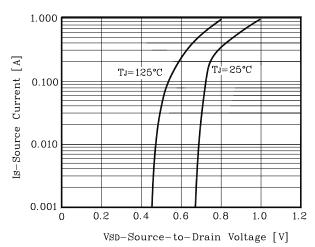
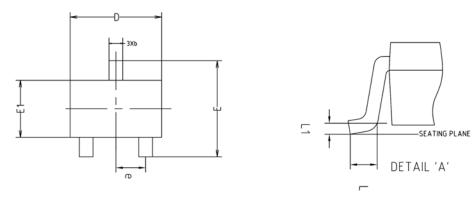
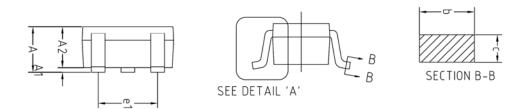
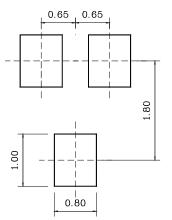





Fig. 8 I_{S} - V_{SD}


Package Outline Dimensions

SYMBOL	1	NOTE		
STRIDUL	MINIMUM	NOMINAL	MAXIMUM	NUTE
Α	0.90	-	1.25	
A1	0.00	-	0.10	
A2	0.85	0.90	0.95	
b	0.30	-	0.40	
с	0.10	-	0.25	
D	1.90	2.00	2.10	
E	1.95	2.10	2.25	
E1	1.15	1.25	1.35	
e	0.65BSC			
e1	1.20	-	1.40	
L	0.10	-	-	
L1	0.12BSC			

※ Recommend PCB solder land (Unit : mm)

The AUK Corp. products are intended for the use as components in general electronic equipment (Office and communication equipment, measuring equipment, home appliance, etc.).

Please make sure that you consult with us before you use these AUK Corp. products in equipments which require high quality and / or reliability, and in equipments which could have major impact to the welfare of human life(atomic energy control, airplane, spaceship, transportation, combustion control, all types of safety device, etc.). AUK Corp. cannot accept liability to any damage which may occur in case these AUK Corp. products were used in the mentioned equipments without prior consultation with AUK Corp..

Specifications mentioned in this publication are subject to change without notice.