SILIC 世俗2N 106供应商

18E D 🗰 8254735 0015125 2 🛤

A+ 1. -

2

-39-17

2N7016

P-Channel Enhancement Mode Transistor

PRODUCT SUMMARY			4-PIN DIP (Similar to TO-250)	TOP VIEW		
V _{(BR)DSS} (V)	^r ds(ON) (Ω)	1 _D (A)				
-60	1.0	0.70		2 4		
			1 GAT 2 SOL 3 DRA	IRCE		

ABSOLUTE MAXIMUM RATINGS ($T_A = 25^{\circ}$ C Unless Otherwise Noted)¹

ł

PARAMETERS/TEST (CONDITIONS	SYMBOL	LIMITS	UNITS
Drain-Source Voltage		V _{DS}	60	
Gate-Source Voltage		V _{GS}	±20	I '
Continuous Drain Current	$T_A = 25^{\circ}C$	ID	0.70	
	$T_A = 100 ^\circ C$	1 · [-	0.45	
Pulsed Drain Current ²		IDM	10	
Power Dissipation	$T_A = 25^{\circ}C$	PD	1.0	w
	$T_A = 100$ °C	1 -	0.4	["
Operating Junction & Storage Temperature Range		Tj, T _{stg}	-55 to 150	
Lead Temperature (1/16" from case for 10 sec.)		TL	300	

THERMAL RESISTANCE RATINGS

THERMAL RESISTANCE	SYMBOL	TYPICAL	MAXIMUM	UNITS	
Junction-to-Ambient	R _{thJA}		120	к/w	

¹Negative signs for current and voltage ratings have been omitted for the sake of clarity, ²Pulse width limited by maximum junction temperature. 4

SILICONIX INC

18E D 🗰 8254735 0015126 4 🛲 T-39-17

BSiliconix

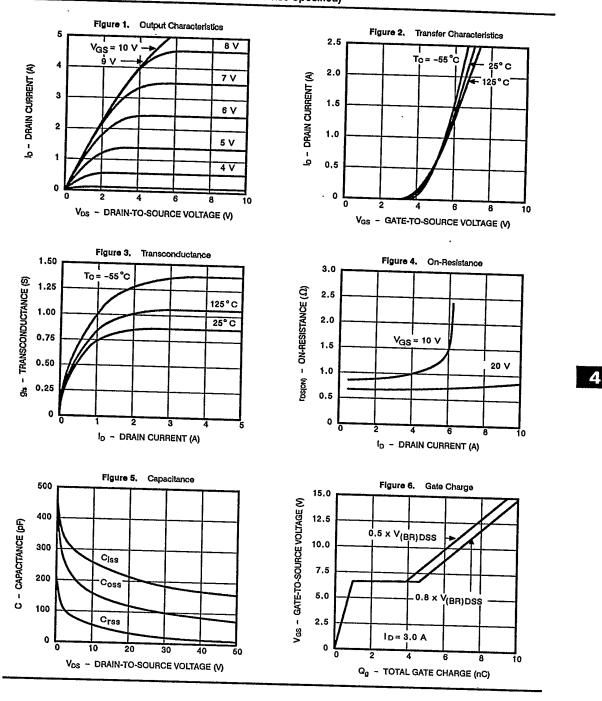
2N7016

			түр	LIMITS		
PARAMETER	SYMBOL	TEST CONDITIONS		MIN	MAX	UNÍT
STATIC						
Drain-Source Breakdown Voltage	V(BR)DSS	V _{QS} = 0 V, I _D = 250 μA		60		v
Gate Threshold Voltage	VGS(th)	V _{DS} = V _{QS} , I _D = 1000 μA		2.0	4.0	
Gate-Body Leakage	lass	$V_{DS} = 0 V, V_{QS} = \pm 20 V$			±100	nA
Zero Gate Voltage Drain Current	IDSS	$V_{DS} = V_{(BR)DSS}, V_{GS} = 0 V$			250	μA
		$V_{DS} = 0.8 \times V_{(BR)DSS}, V_{GS} = 0 V, T_J = 125^{\circ}C$			1000	
On-State Drain Current ¹	ID(ON)	$V_{DS} = 5 V, V_{GS} = 10 V$		0.7		A
Drain-Source On-State Resistance1	r _{ds(on)}	V _{GS} = 10 V, i _D = 0.70 A	0.85		1.0	Ω
		V _{GS} = 10 V, I _D = 0.70 A, T _J = 125°C	1.6		1.9	1
Forward Transconductance1	9ts	$V_{DS} = 15 V, I_D = 2 A$	0.90	0.50		S
DYNAMIC						
Input Capacitance	Ciss		200		290	
Output Capacitance	Coss	$V_{GS} = 0 V$, $V_{DS} \approx 25 V$, f = 1 MHz	110		160	p۶
Reverse Transfer Capacitance	Crss		25		60	
Total Gate Charge ²	Qg		6.1		7.5	1
Gate-Source Charge ²	Q _{gs}	$V_{DS} = 0.8 \times V_{(BR)DSS} V_{GS} = 10 V, i_D = 0.7 A$	0,8			nC
Gate-Drain Charge ²	Q _{od}		3.5		<u> </u>	
Turn-On Delay Time ²	td(on)		8	<u> </u>	20	
Rise Time ²	4	$V_{QO} = 40 \text{ V, } \text{R}_{\text{L}} = 40 \Omega$	9		20	ns
Turn-Off Delay Time ²	td(om)	$I_D \simeq 1 \text{ A}, V_{\text{GEN}} = 10 \text{ V}, \text{R}_G = 25 \Omega$	16		25	
Fall Time ²	ŧ.	-	25		30	
SOURCE-DRAIN DIODE RATI	IGS AND C	HARACTERISTICS (T _A = 25°C)				
Continuous Current	ls				0.70	A
Pulsed Current ³	ISM				10	
Forward Voltage ¹	V _{SD}	$I_F = I_S, V_{GS} = 0 V$	1.3		1.8	V
Reverse Recovery Time	t _r	$I_F = I_S, dI_F/dt = 100 A/\mu s$	60			ns
Reverse Recovery Charge	Q _n	1	0.15			μC

.

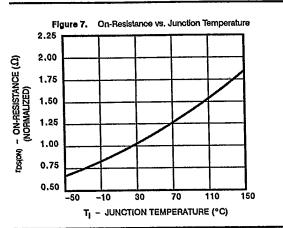
 $^{1} \mbox{Pulse test: Pulse Width \leq 300 μsec, Duty Cycle \leq 2%. \\ ^{2} \mbox{Independent of operating temperature.} \\ ^{3} \mbox{Pulse width limited by maximum junction temperature).}$

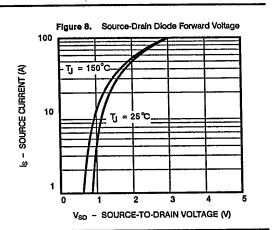
BSiliconix


18E D 🗰 8254735 0015127 6 📼 T-39-17

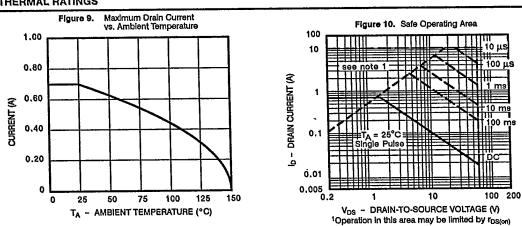
2N7016

TYPICAL CHARACTERISTICS (25°C Unless Otherwise Specified)




P

Siliconix incorporated


2N7016

