

N-Channel Junction FET

Description

- > Especially suited for use in Electret Condenser Microphone
- > Ultra-small package permitting PD030G applied sets to be made smaller and slimmer
- Excellent voltage characteristics
- Excellent transient characteristics

Mechanical Characteristics

- Lead finish:100% matte Sn(Tin)
- Mounting position: Any
- ➤ Qualified max reflow temperature:260 °C
- Device meets MSL 1 requirements
- ➤ Pure tin plating: 7 ~ 17 um
- ➤ Pin flatness:≤3mil

Absolute maximum ratings@25℃

Parameter	Symbol	Ratings	Units
Gate to Drain Voltage	V_{GDO}	-20	V
Gate Current	I _G	10	mA
Drain Current	I _D	1	mA
Allowable Power Dissipation	P _D	100	mW
Junction Temperature	Tj	150	°C
Storage Temperature	T _{stg}	-55 to 150	°C

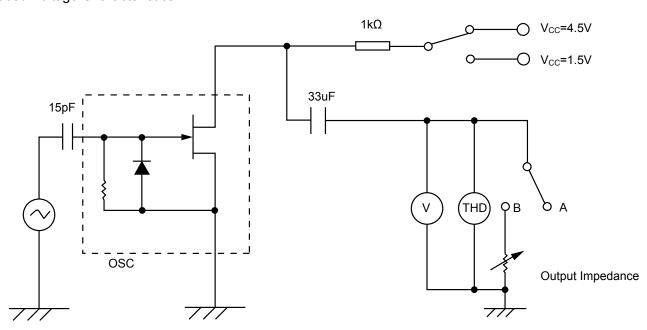
Electrical characteristics per line@25℃ (unless otherwise specified)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Gate-to-Drain Breakdown Voltage	$V_{(BR)GDO}$	I _G =-100 μ A	-20		-	V
Cutoff Voltage	$V_{GS(off)}$	$V_{DS} = 3V, I_D = 1uA$	-0.2	-0.6	-1.2	V
Zero-Gate Voltage Drain Current	I _{DSS}	V_{DS} =3 V , V_{GS} =0	40	-	500	uA
Forward Transfer Admittance	yfs	V_{DS} =3V, V_{GS} =0,f=1KHz	0.4	1.2		ms
Input Capacitance	C _{ISS}	V _{DS} =3V, V _{GS} =0,f=1KHz	-	3.5		pF
Reverse Transfer Capacitance	C _{RSS}	V _{DS} =3V, V _{GS} =0,f=1KHz	-	0.65		pF

The PD030G is classified by IDSS as follows : (Units:uA)						
Rank	E31	E32	E4	E51	E53	E6
I _{DSS}	70~100	100~150	150~200	200~300	300~360	360~480

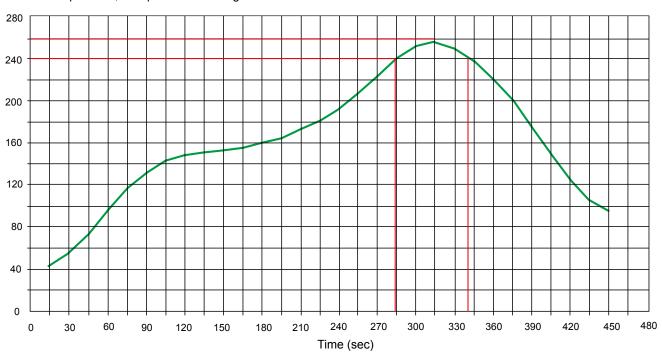
Electrical characteristics per line@25℃ (unless otherwise specified)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
T_A =25°C. V_{CC} =4.5 V , R_L =1 $k\Omega$, C_{in} =15 pF .						
Voltage Gain	G _V	V _{IN} =10mV,f=1KHz		-3.0	-	dB
Reduced Voltage Characteristics	$\triangle G_VV$	V _{IN} =10mV,f=1KHz,V _{CC} =4.5→1.5V		-1.2	-3.5	dB
Frequency Characteristics	$\triangle G_{Vf}$	f=1KHz to 110Hz			-1.0	dB
Input Resistance	Z _{IN}	f=1KHz	25			ΜΩ
Output Resistance	Zo	f=1KHz		1000		Ω
Total Harmonic Distortion	T _{HD}	V _{IN} =30mV,f=1KHz		1.0		%
Output Noise Voltage	V _{NO}				-110	dB

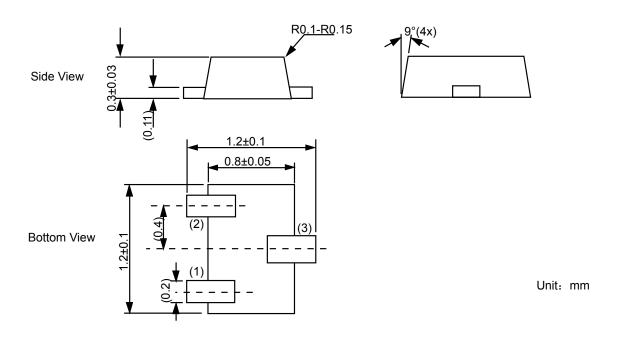

Test Circuit

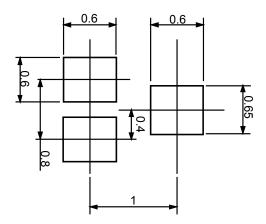
Voltage gain

Frequency Characteristics


Distortion

Reduced Voltage Characteristics




Solder Reflow Recommendation

Peak Temp=257℃, Ramp Rate=0.802deg. ℃/sec

Product dimension (SOT-723)

Unit: mm

Ordering information

Device	Package	Shipping
PD030G	SOT-723 (Pb-Free)	10000 / Tape & Reel

IMPORTANT NOTICE

and Prisemi are registered trademarks of Prisemi Electronics Co., Ltd (Prisemi), Prisemi reserves the right to make changes without further notice to any products herein. Prisemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Prisemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in Prisemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Prisemi does not convey any license under its patent rights nor the rights of others. The products listed in this document are designed to be used with ordinary electronic equipment or devices, Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

Website: http://www.prisemi.com
For additional information, please contact your local Sales Representative.

©Copyright 2009, Prisemi Electronics

Prisemi is a registered trademark of Prisemi Electronics.

All rights are reserved.