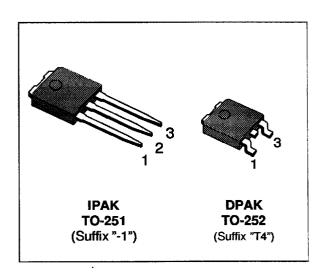
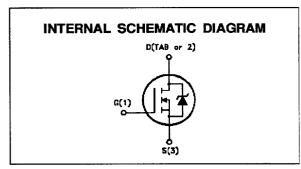


STD8N10L


N - CHANNEL ENHANCEMENT MODE LOW THRESHOLD POWER MOS TRANSISTOR


TYPE	Voss	RDS(on)	lo
STD8N10L	100 V	< 0.33 Ω	8 A

- TYPICAL $R_{DS(on)} = 0.25 \Omega$
- AVALANCHE RUGGED TECHNOLOGY
- 100% AVALANCHE TESTED
- REPETITIVE AVALANCHE DATA AT 100°C
- LOW GATE CHARGE
- HIGH CURRENT CAPABILITY
- 175°C OPERATING TEMPERATURE
- APPLICATION ORIENTED CHARACTERIZATION
- THROUGH-HOLE IPAK (TO-251) POWER PACKAGE IN TUBE (SUFFIX "-1")
- SURFACE-MOUNTING DPAK (TO-252)
 POWER PACKAGE IN TAPE & REEL (SUFFIX "T4")

APPLICATIONS

- HIGH CURRENT, HIGH SPEED SWITCHING
- SOLENOID AND RELAY DRIVERS
- REGULATORS
- DC-DC & DC-AC CONVERTERS
- MOTOR CONTROL, AUDIO AMPLIFIERS
- AUTOMOTIVE ENVIRONMENT (INJECTION, ABS, AIR-BAG, LAMPDRIVERS, Etc.)

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{DS} .	Drain-source Voltage (V _{GS} = 0)	100	٧
VDGR	Drain- gate Voltage (R _{GS} = 20 kΩ)	100	٧
V _{GS}	Gate-source Voltage	± 15	V
I _D	Drain Current (continuous) at T _c = 25 °C	8	A
I _D	Drain Current (continuous) at T _c = 100 °C	5.5	Α
I _{DM} (•)	Drain Current (pulsed)	32	Α
Ptot	Total Dissipation at T _c = 25 °C	45	W
	Derating Factor	0.3	W/°C
T _{stg}	Storage Temperature	-65 to 175	°C
Tj	Max. Operating Junction Temperature	175	°C

(•) Pulse width limited by safe operating area

March 1995

7929237 0072627 387 📟

STD8N10L

THERMAL DATA

ſ	R _{thi-case}	Thermal Resistance	Junction-case	Max	3.33	°C/W
١		Thermal Resistance	Junction-ambient	Max	100	°C/W
١	Rthc-sink	Thermal Resistance	Case-sink	Тур	1.5	°C/W
١	Tı	Maximum Lead Ten	nperature For Soldering Pu	rpose	275	°C

AVALANCHE CHARACTERISTICS

Symbol	Parameter	Max Value	Unit
IAR	Avalanche Current, Repetitive or Not-Repetitive (pulse width limited by T_j max, δ < 1%)	8	А
EAS	Single Pulse Avalanche Energy (starting $T_j = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 25$ V)	25	mJ
EAR	Repetitive Avalanche Energy (pulse width limited by T _j max, δ < 1%)	6	mJ
lar	Avalanche Current, Repetitive or Not-Repetitive $(T_c = 100 ^{\circ}\text{C}, \text{ pulse width limited by T}_{j} \text{max}, \delta < 1\%)$	5.5	А

ELECTRICAL CHARACTERISTICS ($T_{case} = 25$ °C unless otherwise specified) OFF

Symbol Parameter		Test Conditions	Min.	Тур.	Max.	Unit	
V _{(BR)Dss}	Drain-source Breakdown Voltage	$I_D = 250 \mu\text{A}$ $V_{GS} = 0$	100			٧	
I _{DSS}	Zero Gate Voltage Drain Current (Vgs = 0)	V_{DS} = Max Rating V_{DS} = Max Rating x 0.8 T_c = 125 °C			250 1000	μA μA	
lass	Gate-body Leakage Current (V _{DS} = 0)	V _{GS} = ± 15 V			± 100	nA	

ON (*)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{GS(th)}	Gate Threshold Voltage	V _{DS} = V _{GS} I _D = 250 μA	1	1.6	2.5	٧
R _{DS(on)}	Static Drain-source On Resistance	V _{GS} = 5 V I _D = 4 A V _{GS} = 5 V I _D = 4 A T _c = 100°C		0.25	0.33 0.66	Ω
ID(on)	On State Drain Current	VDS > ID(on) x RDS(on)max VGS = 10 V	8			Α

DYNAMIC

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g fs (*)	Forward Transconductance	$V_{DS} > I_{D(on)} \times R_{DS(on)max}$ $I_D = 4 A$	3	7		S
Ciss Coss Crss	Input Capacitance Output Capacitance Reverse Transfer Capacitance	V _{DS} = 25 V f = 1 MHz V _{GS} = 0		430 90 20	650 150 30	pF pF pF

2/10

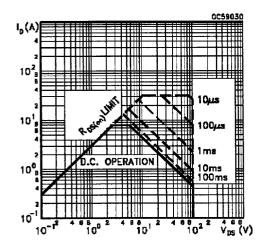
SGS-THOMSON MICROELECTRORICS

ELECTRICAL CHARACTERISTICS (continued)

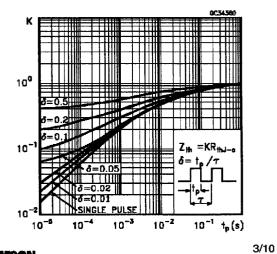
SWITCHING ON

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on Time Rise Time	$V_{DD} = 50 \text{ V}$ $I_D = 4 \text{ A}$ $R_G = 50 \Omega$ $V_{GS} = 5 \text{ V}$ (see test circuit, figure 3)		45 140	65 200	ns ns
(di/dt)on	Turn-on Current Slope	$V_{DD} = 80 \text{ V}$ $I_D = 8 \text{ A}$ $R_G = 50 \Omega$ $V_{GS} = 5 \text{ V}$ (see test circuit, figure 5)		95		A/µs
Qg Qgs Qgd	Total Gate Charge Gate-Source Charge Gate-Drain Charge	V _{DD} = 80 V I _D = 8 A V _{GS} = 5 V		12 5 4	20	nC nC nC

SWITCHING OFF

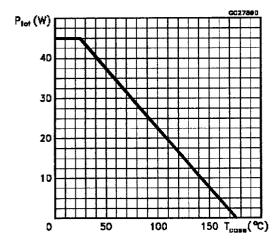

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{r(Voff)}	Off-voltage Rise Time	V _{DD} = 80 V I _D = 8 A		50	70	ns
` t f	Fall Time	$R_G = 50 \Omega V_{GS} = 5 V$	1	50	70	ns
t _c	Cross-over Time	(see test circuit, figure 5)		100	140	ns

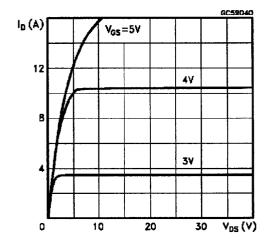
SOURCE DRAIN DIODE


Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SD} I _{SDM} (•)	Source-drain Current Source-drain Current (pulsed)				8 32	A A
V _{SD} (*)	Forward On Voltage	I _{SD} = 8 A V _{GS} = 0			1.5	V
t _{rr}	Reverse Recovery Time	I _{SD} = 8 A di/dt = 100 A/μs V _{DD} = 50 V T _i = 150 °C		80		ns
Q_{rr}	Reverse Recovery Charge	(see test circuit, figure 5)		0.24		μC
IRRM	Reverse Recovery Current			6		Α

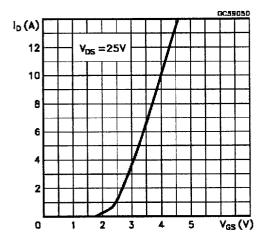
^(*) Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %
(•) Pulse width limited by safe operating area

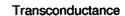
Safe Operating Area

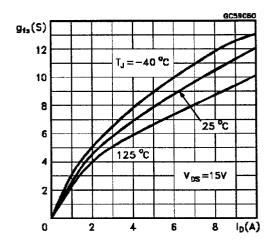

Thermal Impedance

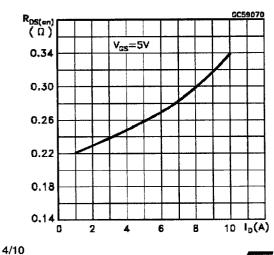

SGS-THOMSON MICROPLICTROMICS

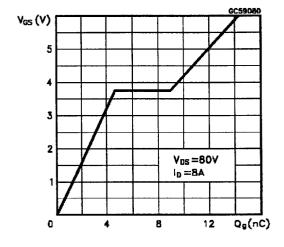
7929237 0072629 15T


Derating Curve

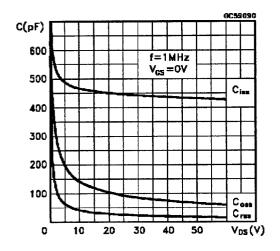


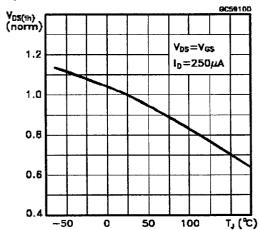

Output Characteristics


Transfer Characteristics

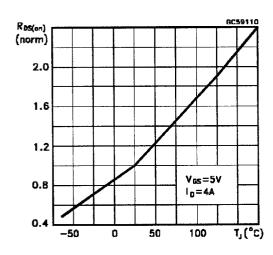


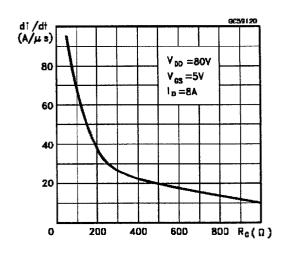
Static Drain-source On Resistance

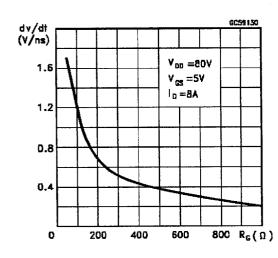

Gate Charge vs Gate-source Voltage

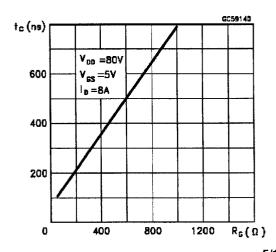

SGS-THOMSON MICROELECTRONICS

■ 7929237 0072630 971 **■**


Capacitance Variations

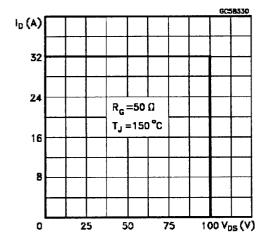

Normalized Gate Threshold Voltage vs Temperature


Normalized On Resistance vs Temperature

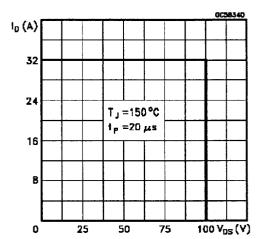

Tum-on Current Slope

Turn-off Drain-source Voltage Slope

Cross-over Time



SGS-THOMSON


5/10

■ 7929237 0072631 808 **■**

Switching Safe Operating Area

Accidental Overload Area

Source-drain Diode Forward Characteristics

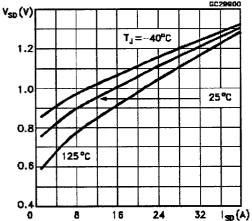


Fig. 1: Unclamped Inductive Load Test Circuits

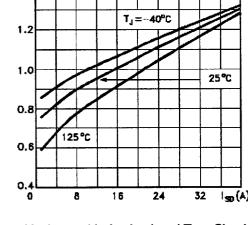
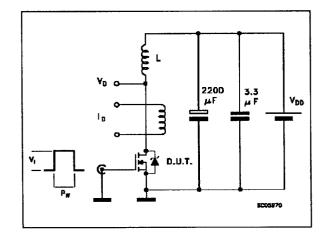
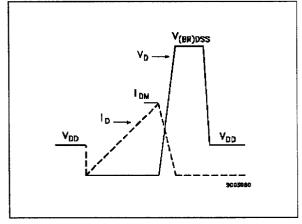




Fig. 2: Unclamped Inductive Waveforms

6/10

SGS-THOMSON MICROELECTRORICS

7929237 0072632 744 🚃

Fig. 3: Switching Times Test Circuits For Resistive Load

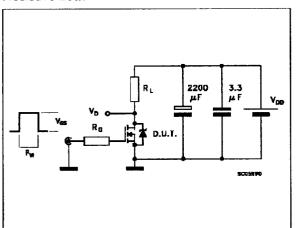


Fig. 4: Gate Charge Test Circuit

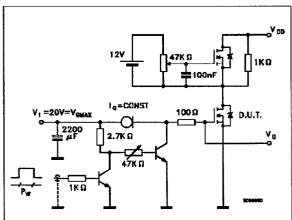
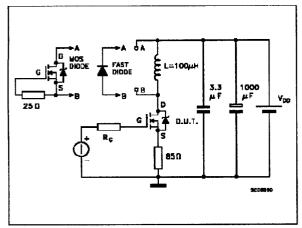
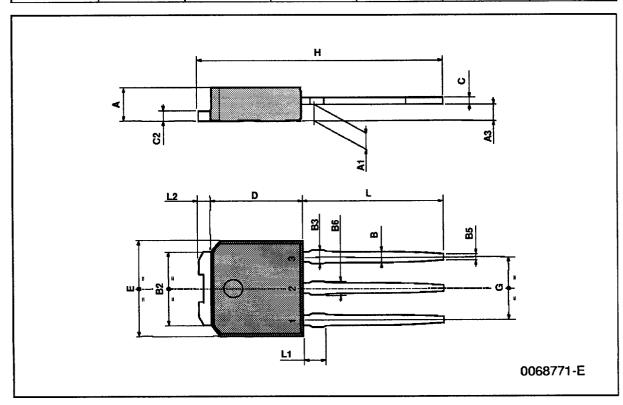
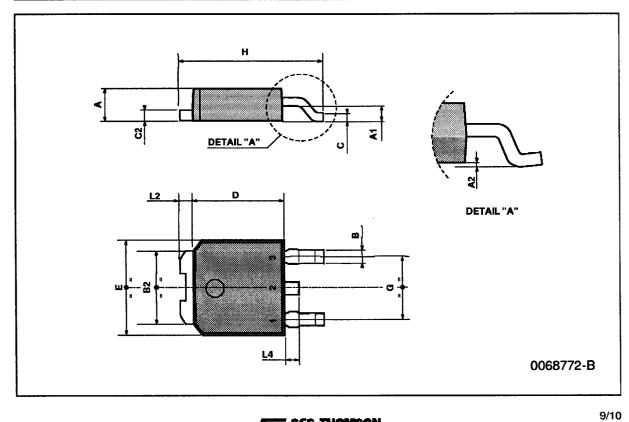




Fig. 5: Test Circuit For Inductive Load Switching And Diode Recovery Times

TO-251 (IPAK) MECHANICAL DATA

DIM		mm			inch	
DIM.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α	2.2		2.4	0.086		0.094
A1	0.9		1.1	0.035		0.043
А3	0.7		1.3	0.027		0.051
В	0.64		0.9	0.025		0.031
B2	5.2		5.4	0.204		0.212
B3			0.85			0.033
B5		0.3			0.012	
B6			0.95			0.037
С	0.45		0.6	0.017		0.023
C2	0.48		0.6	0.019		0.023
D	6		6.2	0.236		0.244
E	6.4		6.6	0.252		0.260
G	4.4		4.6	0.173		0.181
Н	15.9		16.3	0.626		0.641
L	9		9.4	0.354		0.370
L1	0.8		1.2	0.031		0.047
L2		0.8	1		0.031	0.039


8/10

SGS-THOMSON MICROELECTRORIES

7929237 0072634 517

TO-252 (DPAK) MECHANICAL DATA

DIM.		mm inc			inch	
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α	2.2		2.4	0.086		0.094
A1	0.9		1.1	0.035		0.043
A2	0.03		0.23	0.001		0.009
В	0.64		0.9	0.025		0.035
B2	5.2		5.4	0.204		0.212
С	0.45		0.6	0.017		0.023
C2	0.48		0.6	0.019		0.023
D	6		6.2	0.236		0.244
E	6.4		6.6	0.252		0.260
G	4.4		4.6	0.173		0.181
Н	9.35		10.1	0.368		0.397
L2		0.8			0.031	
L4	0.6		1	0.023	·	0.039

SGS-THOMSON —

■ 7929237 0072635 453 **■**