

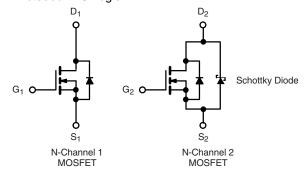
Dual N-Channel 20 V (D-S) MOSFET with Schottky Diode

PRODUCT SUMMARY								
	$V_{DS}(V)$ $R_{DS(on)}(\Omega)$ $I_{D}(A)^{a}$ $Q_{g}(Ty)$							
Channel-1	20	0.0085 at $V_{GS} = 10 \text{ V}$	14.8	8.1				
		0.0115 at $V_{GS} = 4.5 \text{ V}$	12.8	0.1				
Channel-2	annel-2 20	0.0070 at $V_{GS} = 10 \text{ V}$	22	8.4				
		0.0095 at $V_{GS} = 4.5 \text{ V}$	18.9	0.4				

SCHOTTKY PRODUCT SUMMARY					
V _{DS} (V)	V _{SD} (V) Diode Forward Voltage	I _F (A)			
20	0.55 V at 2.5 A	2			

Ordering Information: Si4340DDY-T1-GE3 (Lead (Pb)-free and Halogen-free)

FEATURES


- Halogen-free According to IEC 61249-2-21
- TrenchFET® Power MOSFET
- 100 % R_g Tested
- 100 % UIS Tested
- Compliant to RoHS Directive 2002/95/EC

RoHS COMPLIANT HALOGEN FREE

APPLICATIONS

- DC/DC Converters, Synchronous Buck Converters
 - Game Stations
 - Notebook PC Logic

ABSOLUTE MAXIMUM RATINGS	S (T _A = 25 °C, unle	ess otherwise	e noted)			
Parameter	Symbol	Channel-1	Channel-2	Unit		
Drain-Source Voltage	V _{DS}	2	V			
Gate-Source Voltage	V_{GS}	±	V			
	T _C = 25 °C		14.8	22		
Continuous Drain Current (T _J = 150 °C)	T _C = 70 °C	I-	11.8	17.6	1	
Continuous Dialii Current (1) = 150 C)	T _A = 25 °C	l _D	12.1 ^{b, c}	16.3 ^{b, c}		
	T _A = 70 °C		9.7 ^{b, c}	13 ^{b, c}	_	
Pulsed Drain Current (t = 300 μs)	I _{DM}	50	60	Α		
Source-Drain Current Diode Current	T _C = 25 °C	I_	2.5	4.5]	
Source-Drain Current blode Current	T _A = 25 °C	l _S	1.7 ^{b, c}	2.5 ^{b, c}]	
Single Pulse Avalanche Current		I _{AS}	15			
Single Pulse Avalanche Energy	L = 0.1 mH	E _{AS}	11.25		mJ	
	T _C = 25 °C		3	5.4		
Maximum Power Dissination	T _C = 70 °C	P _D	1.9	3.5	w	
Maximum Power Dissipation	T _A = 25 °C	' D	2 ^{b, c}	3 ^{b, c}	VV	
	T _A = 70 °C		1.3 ^{b, c}	1.9 ^{b, c}	1	
Operating Junction and Storage Temperature Ra	T _J , T _{stg}	- 55 t	°C			

THERMAL RESISTANCE RATINGS								
Channel-1 Channel-2								
Parameter		Symbol	Тур.	Max.	Тур.	Max.	Unit	
Maximum Junction-to-Ambient ^{b, d}	t ≤ 10 s	R_{thJA}	53	62.5	35	42	°C/W	
Maximum Junction-to-Foot (Drain)	Steady State	R_{thJF}	35	42	18	23	0/11	

Notes:

- a. Based on T_C = 25 °C.
- b. Surface mounted on 1" x 1" FR4 board.
- d. Maximum under steady state conditions for channel 1 is 110 °C/W and channel 2 is 87 °C/W.

Document Number: 67583 S11-0860-Rev. A, 02-Mar-11

Si4340DDY

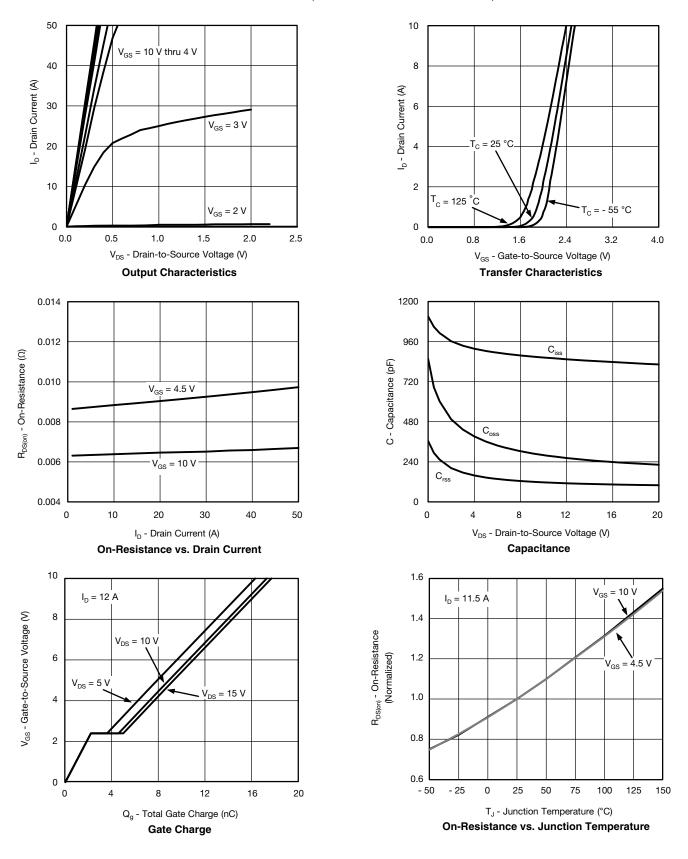
Vishay Siliconix

SPECIFICATIONS ($T_J = 25$ °	C, unless other	erwise noted)						
Parameter	Symbol	Test Conditions		Min.	Тур.	Max.	Unit	
Static								
Drain Source Breekdown Voltage	V	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	Ch-1	20			V	
Drain-Source Breakdown Voltage	V _{DS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	Ch-2	20			V	
V Temperature Coefficient	ΔV/T .	$I_D = 250 \mu A$	Ch-1		20		mV/°C	
V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	I _D = 25 mA	Ch-2		22			
V _{GS(th)} Temperature Coefficient	Δ.V/Τ	I _D = 250 μA	Ch-1		- 4.4		mv/°C	
VGS(th) Temperature obemicient	$\Delta V_{GS(th)}/T_J$	I _D = 25 mA	Ch-2		- 4.6			
Cata Threshold Valtage	V	$V_{DS} = V_{GS}, I_D = 250 \mu A$	Ch-1	1		2.5	V	
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_D = 250 \mu A$	Ch-2	1		2.5	V	
Cata Carrea Laglana		$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$	Ch-1			100	^	
Gate-Source Leakage	l _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$	Ch-2			100	nA	
		$V_{DS} = 20 \text{ V}, V_{GS} = 0 \text{ V}$	Ch-1			1		
7 0	1.	$V_{DS} = 20 \text{ V}, V_{GS} = 0 \text{ V}$	Ch-2			100		
Zero Gate Voltage Drain Current	I _{DSS}	V_{DS} = 20 V, V_{GS} = 0 V, T_J = 85 °C	Ch-1			15	μΑ	
	Ī	V_{DS} = 20 V, V_{GS} = 0 V, T_J = 85 °C	Ch-2			10 000		
On-State Drain Current ^b		$V_{DS} \ge 5 \text{ V}, V_{GS} = 10 \text{ V}$	Ch-1	20			Α	
	I _{D(on)}	$V_{DS} \ge 5 \text{ V}, V_{GS} = 10 \text{ V}$	Ch-2	30				
	R _{DS(on)}	V _{GS} = 10 V, I _D = 11.5 A	Ch-1		0.0065	0.0085	Ω	
		V _{GS} = 10 V, I _D = 15.2 A	Ch-2		0.0060	0.0070		
Drain-Source On-State Resistance ^b		$V_{GS} = 4.5 \text{ V}, I_D = 10 \text{ A}$	Ch-1		0.0091	0.0115		
		$V_{GS} = 4.5 \text{ V}, I_D = 14 \text{ A}$	Ch-2		0.0077	0.0095		
L		V _{DS} = 10 V, I _D = 11.5 A	Ch-1		28		_	
Forward Transconductance ^b	9 _{fs}	V _{DS} = 10 V, I _D = 15.2 A	Ch-2		44		S	
Dynamic ^a				<u>l</u>	ı		l	
-			Ch-1		862			
Input Capacitance	C _{iss}	Channel-1	Ch-2		956			
Output Capacitance	C _{oss}	$V_{DS} = 10 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$	Ch-1		280		pF	
- Cutput Capacitance	Joss	Channel-2	Ch-2		363		pr	
Reverse Transfer Capacitance	C _{rss}	$V_{DS} = 10 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$	Ch-1		116			
<u>'</u>	.55		Ch-2		120			
		$V_{DS} = 10 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 12 \text{ A}$	Ch-1		17.4	26	- - -	
Total Gate Charge	Qg	$V_{DS} = 10 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 12 \text{ A}$	Ch-2		17.8	27		
		Channel-1	Ch-1		8.1	12.5		
	Q _{gs}	$V_{DS} = 10 \text{ V}, V_{GS} = 4.5 \text{ V}, I_D = 12 \text{ A}$	Ch-2 Ch-1		8.4 2.2	12.5	nC	
Gate-Source Charge		01	Ch-2		2.6			
	Q _{gd}	Channel-2 $V_{DS} = 10 \text{ V}, V_{GS} = 4.5 \text{ V}, I_{D} = 12 \text{ A}$	Ch-1		2.4			
Gate-Drain Charge		VDS - 10 V, VGS - 4.0 V, ID - 12 A	Ch-2		2.5			
Gata Pacietanea	B	4 4 541 -			2.2	4.4	0	
Gate Resistance	R_g	f = 1 MHz	Ch-2		2.6	5.2	Ω	

Notes:

a. Guaranteed by design, not subject to production testing. b. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2 %.

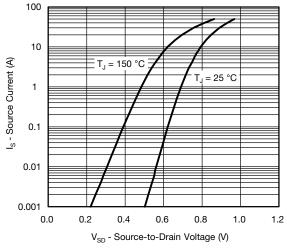
SPECIFICATIONS (T _J = 25 °C, unless otherwise noted)									
Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit			
Dynamic ^a									
Turn-On Delay Time	t _{d(on)}	Channel 4	Ch-1		18	35			
	u(on)	Channel-1 $V_{DD} = 10 \text{ V, R}_{I} = 1 \Omega$	Ch-2		20	40			
Rise Time	t _r	$I_D \approx 10 \text{ A}, V_{GEN} = 4.5 \text{ V}, R_a = 1 \Omega$	Ch-1		37	70			
		G - GEN - G	Ch-2		34	65			
Turn-Off Delay Time	t _{d(off)}	Channel-2	Ch-1		19	35			
·	, ,	$V_{DD} = 10 \text{ V}, R_L = 1 \Omega$	Ch-2		21	40			
Fall Time	t _f	$I_D \approx 10 \text{ A}, V_{GEN} = 4.5 \text{ V}, R_g = 1 \Omega$	Ch-1 Ch-2		10	20			
			Ch-2		10 9	20 18	ns		
Turn-On Delay Time	t _{d(on)}	Channel-1	Ch-2		9	18	-		
		$V_{DD} = 10 \text{ V}, R_L = 1 \Omega$	Ch-1		13	26			
Rise Time	t _r	$I_D \cong 10 \text{ A}, V_{GEN} = 10 \text{ V}, R_g = 1 \Omega$	Ch-2		13	26			
		<u> </u>			16	32	1		
Turn-Off Delay Time	t _{d(off)}	Channel-2 $V_{DD} = 10 \text{ V, R}_{I} = 1 \Omega$	Ch-2		15	30			
E 11 T	t _f	$I_{D} = 10 \text{ V}, I_{C} = 10 \Omega$	Ch-1		8	16			
Fall Time		D - 7 GEN - 7 g	Ch-2		8	16			
Drain-Source Body Diode Characteristic	cs				•				
Continuous Source-Drain Diode Current	I _S	T _C = 25 °C	Ch-1			2.5	A		
Continuous Course Brain Blode Carrent		.0 20 0	Ch-2			4.5			
Pulse Diode Forward Current ^a	I _{SM}		Ch-1			50			
Talse Blode Forward Current	OW		Ch-2			60			
Body Diode Voltage	V_{SD}	I _S = 5 A	Ch-1 0.76		0.76	1.2	V		
	. 20	I _S = 2.5 A	Ch-2		0.43	0.55			
Body Diode Reverse Recovery Time	t _{rr}		Ch-1		18	36	ns		
	٩rr	Channel-1	Ch-2		18	36			
Body Diode Reverse Recovery Charge	Q _{rr}	$I_F = 9.2 \text{ A}$, dl/dt = 100 A/ μ s, $T_J = 25 ^{\circ}\text{C}$	Ch-1		7	14	nC		
	"	- 5.2 / ξ, αναί = 100 / γμο, 1 μο σ	Ch-2		7	14			
Reverse Recovery Fall Time	t _a	Channel-2	Ch-1		8				
<u>-</u>		$I_F = 2.5 \text{ A}, \text{ dI/dt} = 100 \text{ A/}\mu\text{s}, T_J = 25 ^{\circ}\text{C}$	Ch-2		10		ns		
Reverse Recovery Rise Time	t _b		Ch-1		9				
			Ch-2		9				

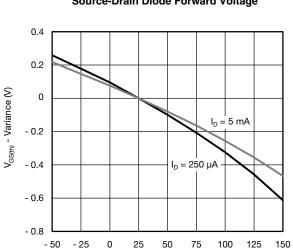

Notes:

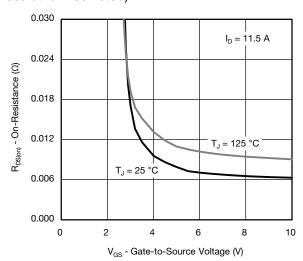
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

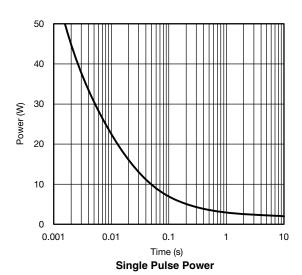
a. Guaranteed by design, not subject to production testing.

b. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2 %.

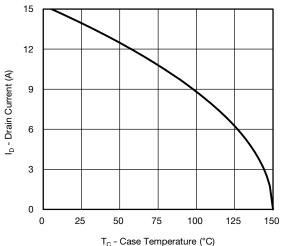

CHANNEL-1 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

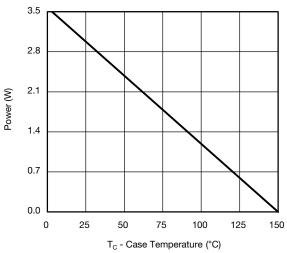


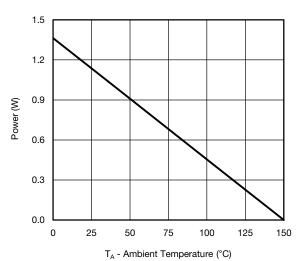

CHANNEL-1 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)



T_. - Temperature (°C) **Threshold Voltage**

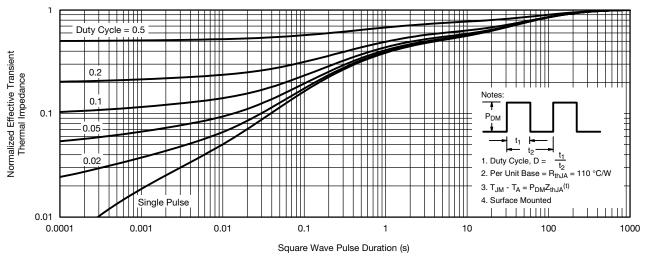

On-Resistance vs. Gate-to-Source Voltage


100 10 100 µs I_D - Drain Current (A) Limited by R_{DS} 100 ms 0.1 T_C = 25 °C Single Pulse 0.01 0.01 V_{DS} - Drain-to-Source Voltage (V) * V_{GS} > minimum V_{GS} at which $R_{DS(on)}$ is specified

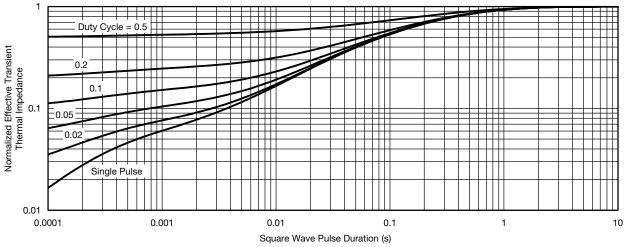

Safe Operating Area, Junction-to-Ambient

CHANNEL-1 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

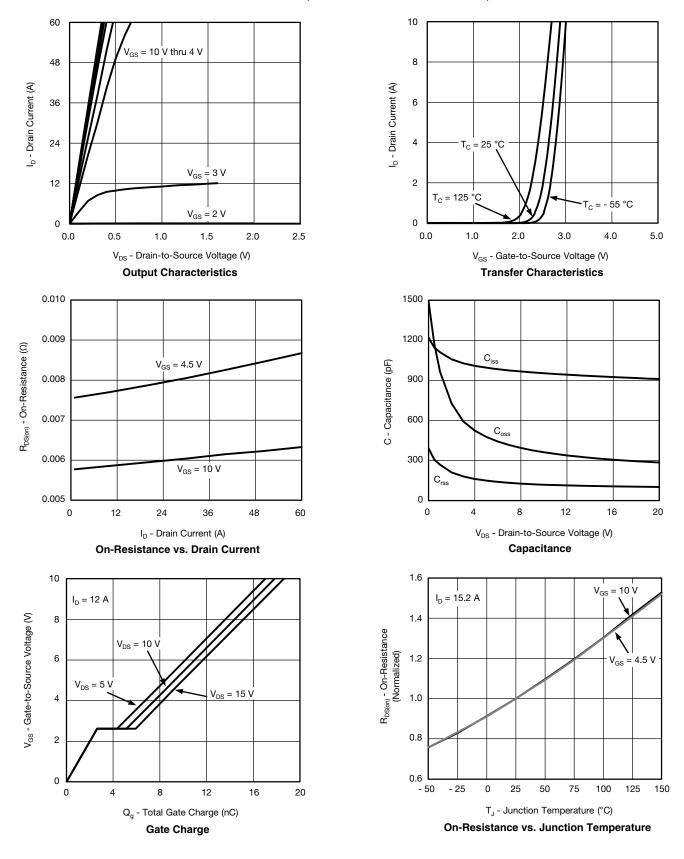
Current Derating*


Power Derating, Junction-to-Foot

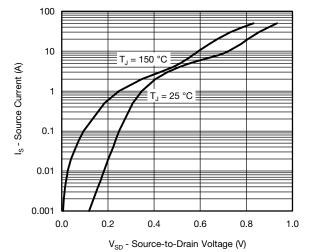
Power Derating, Junction-to-Ambient


^{*} The power dissipation PD is based on TJ(max) = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.

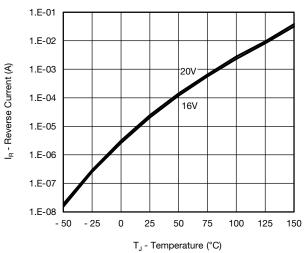
CHANNEL-1 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

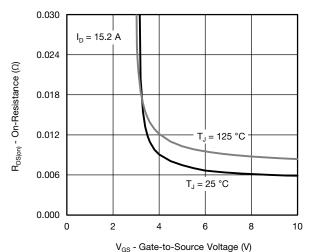

Normalized Thermal Transient Impedance, Junction-to-Ambient

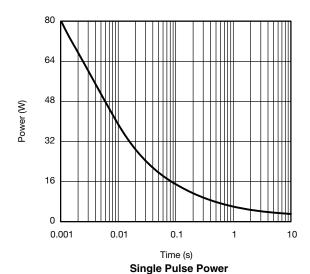
Normalized Thermal Transient Impedance, Junction-to-Foot


VISHAY.

CHANNEL-2 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

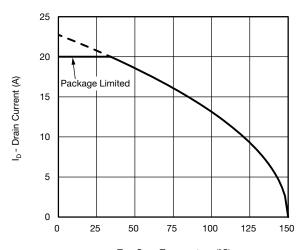



CHANNEL-2 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)


Source-Drain Diode Forward Voltage

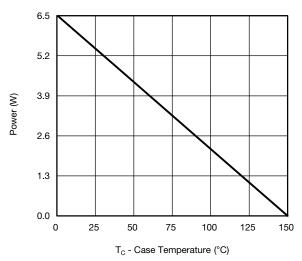
Reverse Current vs. Junction Temperature

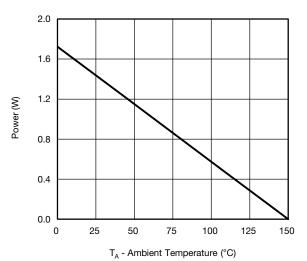
On-Resistance vs. Gate-to-Source Voltage



100 Use I_{D} Limited I_{D

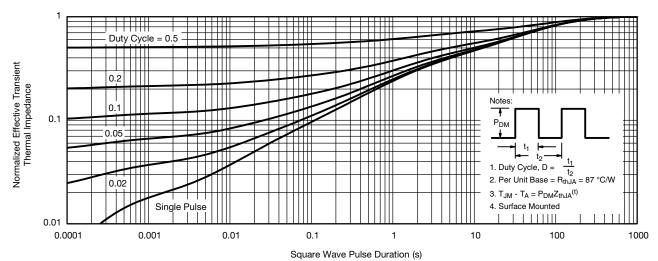
 * V_{GS} > minimum $\,V_{\text{GS}}$ at which $\,R_{\text{DS(on)}}$ is specified


Safe Operating Area, Junction-to-Ambient

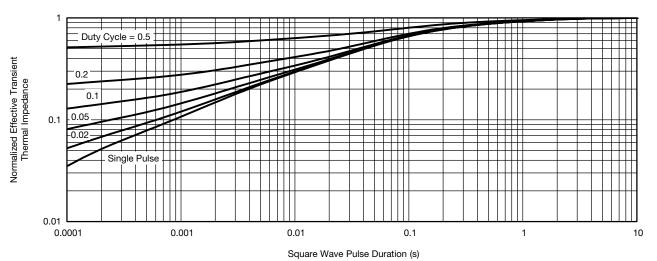

CHANNEL-2 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

T_C - Case Temperature (°C)

Current Derating*

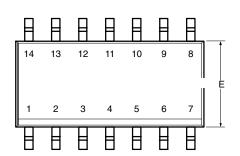

Power Derating, Junction-to-Foot

Power Derating, Junction-to-Ambient

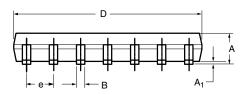

^{*} The power dissipation PD is based on TJ(max) = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.

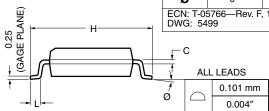
CHANNEL-2 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Normalized Thermal Transient Impedance, Junction-to-Ambient



Normalized Thermal Transient Impedance, Junction-to-Foot


Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppq?67583.



SOIC (NARROW): 14-LEAD

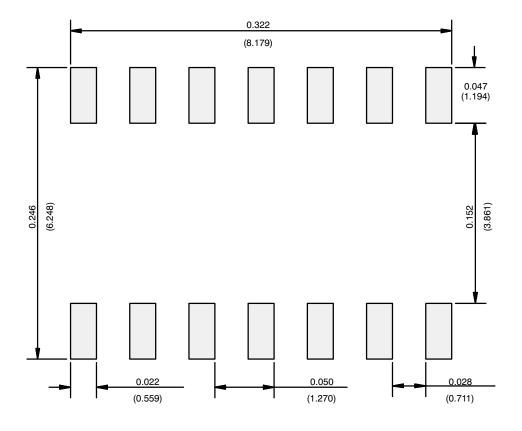
	MILLIM	IETERS	INCHES				
Dim	Min	Max	Min	Max			
Α	1.35	1.75	0.053	0.069			
A ₁	0.10	0.20	0.004	0.008			
В	0.38	0.51	0.015	0.020			
С	0.18	0.23	0.007	0.009			
D	8.55	8.75	0.336	0.344			
E	3.8	4.00	0.149	0.157			
е	1.27	BSC	0.050 BSC				
Н	5.80	6.20	0.228	0.244			
L	0.50	0.93	0.020	0.037			
Ø	0°	8°	0°	8°			
ECN: T-05766—Rev. F, 19-Sep-05							

Legal Disclaimer Notice

Vishay

Notice

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.


Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

www.vishay.com Revision: 08-Apr-05

RECOMMENDED MINIMUM PADS FOR SO-14

Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index

APPLICATION NOTE

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.

Revision: 02-Oct-12 Document Number: 91000