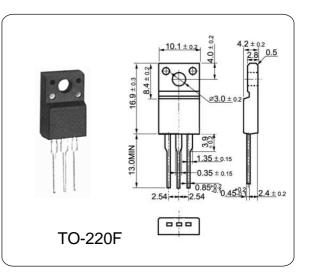


TIGER ELECTRONIC CO.,LTD

Product specification

60V N-Channel MOSFET


FQPF50N06

DESCRIPTION

These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for low voltage applications such as automotive, DC/DC converters, and high efficiency switching for power management in portable and battery operated products.

ADSOLUTE IMAXIMUM RATINGS (Ta = 25 C)								
Parameter	I	Value	Unit					
Drain-Source Voltage	V _{DSS}	60	V					
Drain Current - Continuous	I _D	50	Α					
Drain Current - Pulsed	I _{DM}	200	Α					
Gate-Source Voltage	V _{GSS}	±25	V					
Power Dissipation	P _D	120	W					
Max. Operating Junction Temperature	Tj	150	°C					
Storage Temperature	T _{stg}	-55~150	°C					

ABSOLUTE MAXIMUM RATINGS (Ta = 25° C)

ELECTRICAL CHARACTERISTICS (Ta = 25 $^{\circ}$ C)

Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Drain-Source Breakdown Voltage	BV _{DSS}	V_{GS} = 0V, I_D =250 μ A	60			V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =60V, V _{GS} =0V			1.0	uA
Gate-Body Leakage Current, Forward	I _{GSSF}	V _{GS} =25V, V _{DS} =0V			100	nA
Gate-Body Leakage Current, Reverse	I _{GSSR}	V _{GS} = -25V, V _{DS} =0V			-100	nA
Gate Threshold Voltage	V _{GS(th)}	V_{DS} = V_{GS} , I_{D} =250 μ A	2.0		4.0	V
Static Drain-Source On-Resistance	R _{DS(on)}	V_{GS} = 10 V, I _D = 25 A		18	22	m Ω
Forward Transconductance	g _{FS}	$V_{\rm DS}$ = 25 V, I _D = 25 A		22		S
Drain-Source Diode Forward Voltage	V _{SD}	$V_{GS} = 0 V, I_{S} = 50 A$			1.5	V