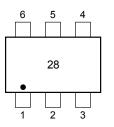

TOSHIBA Transistor Silicon NPN-PNP Epitaxial Type (PCT process) (Bias Resistor Built-in Transistor)

RN49A2

Switching, Inverter Circuit, Interface Circuit and Driver Circuit Applications

- Two devices are incorporated into an Ultra-Super-Mini (6-pin) package.
- Incorporating a bias resistor into a transistor reduces the parts count. Reducing the parts count enables the manufacture of ever more compact equipment and lowers assembly cost.

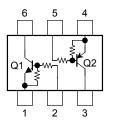
Equivalent Circuit and Bias Resistor Values


```
R1: 47 kΩ, R2: 47 kΩ
Q2
```

R1: 2.2 kΩ, R2: 47 kΩ

Q1: RN1104F equivalent

Q2: RN2105F equivalent


Marking

2.0±0.2 0.9±0.1 1.3±0.1 1		
US6	 EMITTER 1 BASE 1 COLLECTOR 2 EMITTER 2 BASE 2 COLLECTOR 2 	(E2) (B2)
JEDEC	_	
JEITA	_	
TOSHIE	A 2-2J1A	L.

Weight: 0.006g (typ.)

Equivalent Circuit (top view)

Unit: mm

Maximum Ratings (Ta = 25°C) (Q1)

Characteristics	Symbol	Rating	Unit
Collector-base voltage	V _{CBO}	50	V
Collector-emitter voltage	V _{CEO}	50	V
Emitter-base voltage	V _{EBO}	10	V
Collector current	Ι _C	100	mA

Maximum Ratings (Ta = 25°C) (Q2)

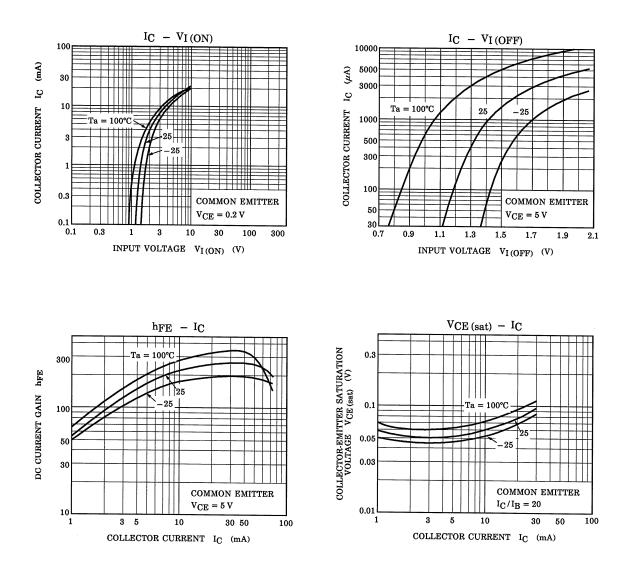
Characteristics	Symbol	Rating	Unit
Collector-base voltage	V _{CBO}	-50	V
Collector-emitter voltage	V _{CEO}	-50	V
Emitter-base voltage	V _{EBO}	-5	V
Collector current	Ι _C	-100	mA

Maximum Ratings (Ta = 25°C) (Q1, Q2 common)

Characteristics	Symbol	Rating	Unit
Collector power dissipation	P _C (Note)	200	mW
Junction temperature	Тј	150	°C
Storage temperature range	T _{stg}	-55~150	°C
Nata, Tatal action			•

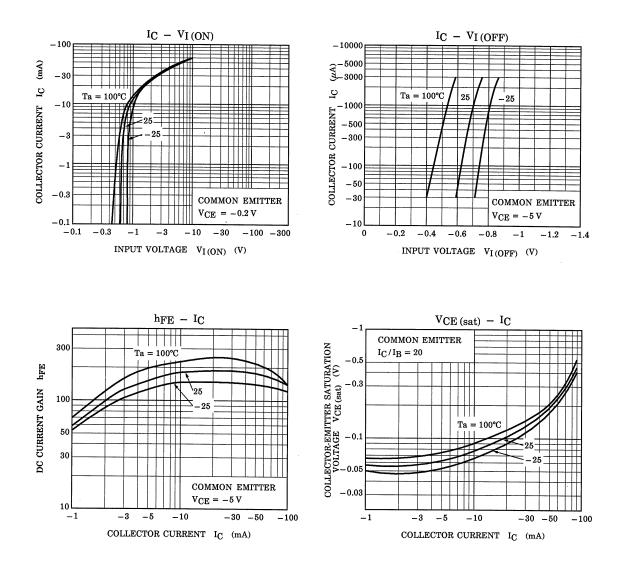
Note: Total rating

Electrical Characteristics (Ta = 25°C) (Q1)

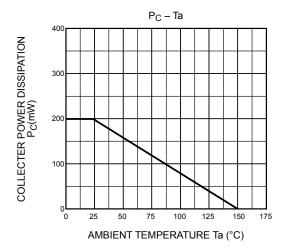

Characteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Collector cut-off current	I _{CBO}	$V_{CB} = 50 \text{ V}, \text{ I}_{E} = 0$	_		100	nA
	I _{CEO}	$V_{CE} = 50 \text{ V}, I_B = 0$	_	_	500	
Emitter cut-off current	I _{EBO}	$V_{EB}=10~V,~I_C=0$	0.082	_	0.15	mA
DC current gain	h _{FE}	$V_{CE} = 5 \text{ V}, I_{C} = 10 \text{ mA}$	80	_	_	
Collector-emitter saturation voltage	V _{CE (sat)}	$I_{C} = 5 \text{ mA}, I_{B} = 0.25 \text{ mA}$	_	0.1	0.3	V
Input voltage (ON)	V _{I (ON)}	$V_{CE} = 0.2 \text{ V}, I_{C} = 5 \text{ mA}$	1.5	_	5.0	V
Input voltage (OFF)	V _{I (OFF)}	$V_{CE} = 5 \text{ V}, I_{C} = 0.1 \text{ mA}$	1.0	_	1.5	V
Transition frequency	f _T	$V_{CE} = 10 \text{ V}, \text{ I}_{C} = 5 \text{ mA}$	_	250	_	MHz
Collector output capacitance	C _{ob}	$V_{CB} = 10 \text{ V}, \text{ I}_{E} = 0, \text{ f} = 1 \text{ MHz}$	_	3	_	pF
Input resistance	R1	—	32.9	47	61.1	kΩ
Resistance ratio	R1/R2	—	0.9	1.0	1.1	

Electrical Characteristics (Ta = 25°C) (Q2)

Characteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Collector cut-off current	I _{CBO}	$V_{CB} = -50 \text{ V}, \ I_E = 0$	—	—	100	nA
	ICEO	$V_{CE}=-50~V,~I_B=0$	_	_	500	
Emitter cut-off current	I _{EBO}	$V_{EB}=-5~V,~I_C=0$	-0.078	_	-0.145	mA
DC current gain	h _{FE}	$V_{CE} = -5 \text{ V}, I_{C} = -10 \text{ mA}$	80	_	_	
Collector-emitter saturation voltage	V _{CE (sat)}	$I_{C} = -5 \text{ mA}, I_{B} = -0.25 \text{ mA}$	_	-0.1	-0.3	V
Input voltage (ON)	V _{I (ON)}	$V_{CE} = -0.2$ V, $I_C = -5$ mA	-0.6	_	-1.1	V
Input voltage (OFF)	V _{I (OFF)}	$V_{CE} = -5 \text{ V}, \text{ I}_{C} = -0.1 \text{ mA}$	-0.5	_	-0.8	V
Transition frequency	f _T	$V_{CE} = -10 \text{ V}, \text{ I}_{C} = -5 \text{ mA}$	_	200	_	MHz
Collector output capacitance	C _{ob}	$V_{CB} = -10 \text{ V}, I_E = 0, f = 1 \text{ MHz}$ f=1MHz	_	3	_	pF
Input resistance	R1	—	1.54	2.2	2.86	kΩ
Resistance ratio	R1/R2	—	0.0421	0. 0468	0.0 515	


TOSHIBA

Q1


TOSHIBA

Q2

TOSHIBA

Q1,Q2 COMMON

RESTRICTIONS ON PRODUCT USE

030619EAA

- The information contained herein is subject to change without notice.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and

set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..

- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations.