

High Speed PT IGBT

POWER MOS 8® is a high speed Punch-Through switch-mode IGBT. Low $\rm E_{\rm off}$ is achieved through leading technology silicon design and lifetime control processes. A reduced $\rm E_{\rm off}$ - $\rm V_{\rm CE(ON)}$ tradeoff results in superior efficiency compared to other IGBT technologies. Low gate charge and a greatly reduced ratio of $\rm C_{\rm res}/\rm C_{\rm les}$ provide excellent noise immunity, short delay times and simple gate drive. The intrinsic chip gate resistance and capacitance of the poly-silicone gate structure help control di/dt during switching, resulting in low EMI, even when switching at high frequency.

FEATURES

- Fast switching with low EMI
- Very Low $\mathbf{E}_{\mathrm{off}}$ for maximum efficiency
- ullet Ultra low ullet for improved noise immunity
- · Low conduction loss
- · Low gate charge
- · Increased intrinsic gate resistance for low EMI
- RoHS compliant

TYPICAL APPLICATIONS

- · ZVS phase shifted and other full bridge
- · Half bridge
- High power PFC boost
- Welding
- . UPS, solar, and other inverters
- · High frequency, high efficiency industrial

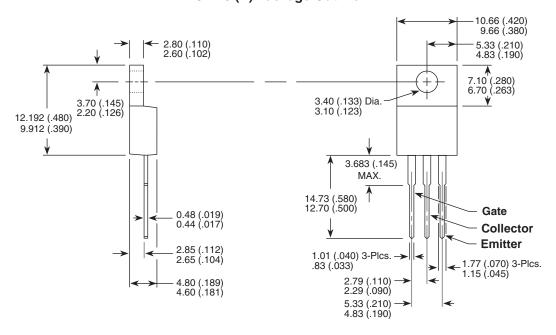
Absolute Maximum Ratings

Symbol	Parameter	Ratings	Unit
V _{ces}	Collector Emitter Voltage	900	V
I _{C1}	Continuous Collector Current @ T _C = 25°C	48	
I _{C2}	Continuous Collector Current @ T _C = 100°C	27	Α
I _{CM}	Pulsed Collector Current ¹	79	
$V_{\sf GE}$	Gate-Emitter Voltage ²	±30	V
$P_{_{D}}$	Total Power Dissipation @ T _c = 25°C	223	W
SSOA	Switching Safe Operating Area @ T _J = 150°C	79A @ 900V	
T _J , T _{STG}	Operating and Storage Junction Temperature Range	-55 to 150	°C
T _L	Lead Temperature for Soldering: 0.063" from Case for 10 Seconds	300	

Static Characteristics

$T_J = 25$ °C unless otherwise specified

Symbol	Parameter	Test Conditions		Min	Тур	Max	Unit
V _{BR(CES)}	Collector-Emitter Breakdown Voltage	$V_{GE} = 0V, I_{C} = 1.0mA$		900			
$V_{\text{CE(on)}}$	Collector-Emitter On Voltage	V _{GE} = 15V,	T _J = 25°C		2.5	3.1	V
		I _C = 14A	T _J = 125°C		2.2		l v
$V_{GE(th)}$	Gate Emitter Threshold Voltage	$V_{GE} = V_{CE}$, $I_{C} = 1mA$		3	4.5	6	
I _{CES}	Zero Gate Voltage Collector Current	V _{CE} = 900V,	T _J = 25°C			250	
		$V_{GE} = 0V$	T _J = 125°C			2500	μΑ
I _{GES}	Gate-Emitter Leakage Current	V _{GS} = ±30V				±100	nA


Thermal and Mechanical Characteristics

Symbol	Characteristic	Min	Тур	Max	Unit
R _{eJC}	Junction to Case Thermal Resistance	-	-	0.56	°C/W
$W_{\scriptscriptstyle T}$	Package Weight	-	1.9	-	g
Torque	Mounting Torque (TO-220 Package), 4-40 or M3 screw			10	in∙lbf

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
C _{ies}	Input Capacitance	Capacitance		1390		
C _{oes}	Output Capacitance	$V_{GE} = 0V, V_{CE} = 25V$		145		
C _{res}	Reverse Transfer Capacitance	f = 1MHz		30		pF
Q_g^3	Total Gate Charge	Gate Charge		62		
Q _{ge}	Gate-Emitter Charge	V _{GE} = 15V		8		
Q_{gc}	Gate- Collector Charge	V _{ce} = 450V I _c = 14A		24		nC
SSOA	Switching Safe Operating Area	$T_J = 150$ °C, $R_G = 10\Omega^4$, $V_{GE} = 15V$, $L = 100$ uH, $V_{CE} = 900$ V				А
$t_{\sf d(on)}$	Turn-On Delay Time	Inductive Switching (25°C)		9		
t _r	Current Rise Time	Inductive Switching (25°C) V _{CC} = 600V V _{GE} = 15V		8		ns
$t_{d(off)}$	Turn-Off Delay Time			98		115
t _r	Current Fall Time	I _C = 14A		84		
E _{on2}	Turn-On Switching Energy	$R_{_{\rm G}} = 10\Omega^4$		413		1
E _{off}	Turn-Off Switching Energy	T _J = +25°C		287		μJ
t _{d(on}	Turn-On Delay Time	Inductive Switching (125°C)		8		
t,	Current Rise Time	V _{CC} = 600V		10		, no
$t_{d(off)}$	Turn-Off Delay Time	V _{GE} = 15V		137		ns
t,	Current Fall Time	I _C = 14A		144		
E _{on2}	Turn-On Switching Energy	R _G = 10Ω ⁴		760		1
E _{off}	Turn-Off Switching Energy	T _J = +125°C		647		μJ

- 1 Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature.
- 2 Pulse test: Pulse Width < 380µs, duty cycle < 2%.
- 3 See Mil-Std-750 Method 3471.
- 4 R_c is external gate resistance, not including internal gate resistance or gate driver impedance. (MIC4452)
- 5 E_{on2} is the clamped inductive turn on energy that includes a commutating diode reverse recovery current in the IGBT turn on energy loss. A combi device is used for the clamping diode.
- 6 E_{off} is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. Microsemi reserves the right to change, without notice, the specifications and information contained herein.

TO-220 (K) Package Outline

Dimensions in Millimeters and (Inches)

352-6331 Rev A 4 - 2008

Microsemi's products are covered by one or more of U.S. patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 6,939,743 7,352,045 5,283,201 5,801,417 5,648,283 7,196,634 6,664,594 7,157,886 6,939,743 7,342,262 and foreign patents. US and Foreign patents pending. All Rights Reserved.