
Vishay Siliconix

Power MOSFET

PRODUCT SUMMA	PRODUCT SUMMARY				
V _{DS} (V)	- {	50			
R _{DS(on)} (Ω)	V _{GS} = - 10 V	0.33			
Q _g (Max.) (nC)	2	6			
Q _{gs} (nC)	6	.2			
Q _{gd} (nC)	8	.6			
Configuration	Sin	gle			

FEATURES

- P-Channel Versatility
- · Compact Plastic Package
- · Fast Switching
- Low Drive Current
- · Ease of Paralleling
- Excellent Temperature Stability

DESCRIPTION

The Power MOSFET technology is the key to Vishay's advanced line of Power MOSFET transistors. The efficient geometry and unique processing of the Power MOSFET design achieve very low on-state resistance combined with high transconductance and extreme device ruggedness.

The P-Channel Power MOSFET's are designed for application which require the convenience of reverse polarity operation. They retain all of the features of the more common N-Channel Power MOSFET's such as voltage control, verv fast switching, ease of paralleling, and excellent temperature stability.

P-Channel Power MOSFETs are intended for use in power stages where complementary symmetry with N-Channel devices offers circuit simplification. They are also very useful in drive stages because of the circuit versatility offered by the reverse polarity connection. Applications include motor control, audio amplifiers, switched mode converters, control circuits and pulse amplifiers.

ORDERING INFORMATION	
Package	TO-220
Lead (Pb)-free	IRF9Z22PbF
	SiHF9Z22-E3
SnPb	IRF9Z22
SILLO	SiHF9Z22

ABSOLUTE MAXIMUM RATINGS T	_C = 25 °C, u	nless otherw	ise noted			
PARAMETER		SYMBOL	LIMIT	UNIT		
Drain-Source Voltage			V _{DS}	- 50		
Gate-Source Voltage		V _{GS}	± 20	V		
Drain-Gate Voltage (R _{GS} = 20 KΩ)			V _{GDR}	- 50		
Continuous Drain Current	V _{GS} at - 10 V	T _C = 25 °C		- 8.9	А	
Continuous Drain Current	VGS at - 10 V	T _C = 100 °C	I _D	- 5.6		
Pulsed Drain Current ^a	<u>.</u>		I _{DM}	- 36		
Linear Derating Factor				0.32	W/°C	
Inductive Current, Clamped	L = 10	00 μH	I _{LM}	- 36	A	
Unclamped Inductive Current (Avalanche Current)			١L	- 2.2	А	
Maximum Power Dissipation	T _C =	25 °C	PD	40	W	
Operating Junction and Storage Temperature Range			T _J , T _{stg}	- 55 to + 150	°C	
Soldering Recommendations (Peak Temperature)	for	10 s	<u> </u>	300 ^c		

Notes

a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 14). b. $V_{DD} = -25 \text{ V}$, starting $T_J = 25 \text{ °C}$, L =100 µH, $R_G = 25 \Omega$

c. 0.063" (1.6 mm) from case.

* Pb containing terminations are not RoHS compliant, exemptions may apply

Vishay Siliconix

THERMAL RESISTANCE RA	ERMAL RESISTANCE RATINGS					
PARAMETER	SYMBOL	TYP.	MAX.	UNIT		
Maximum Junction-to-Ambient	R _{thJA}	-	80			
Case-to-Sink, Flat, Greased Surface	R _{thCS}	1.0	-	°C/W		
Maximum Junction-to-Case (Drain)	R _{thJC}	-	3.1			

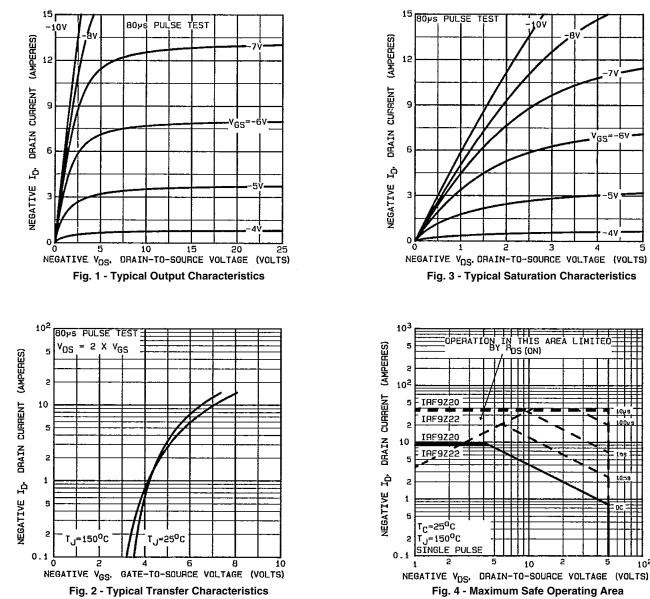
PARAMETER	SYMBOL	TES	ST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Static							
Drain-Source Breakdown Voltage	V _{DS}	V _{GS} =	= 0 V, I _D = - 250 μA	- 50	-	-	V
Gate-Source Threshold Voltage	V _{GS(th)}	V _{DS} =	V_{GS} , I_D = - 250 μ A	- 2.0	-	- 4.0	V
Gate-Source Leakage	I _{GSS}		V _{GS} = ± 20 V	-	-	± 500	nA
Zara Cata Valtaga Drain Current		V_{DS} = max. rating, V_{GS} = 0 V		-	-	- 250	μA
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = max. rati	ng x 0,8, V_{GS} = 0 V, T _J =125°C	-	-	- 1000	μΑ
Drain-Source On-State Resistance	R _{DS(on)}	V _{GS} = - 10 V	I _D = - 5.6 A ^b	-	0.28	0.33	Ω
Forward Transconductance	g _{fs}	V _{DS} = 2	x V _{GS} , I_{DS} = - 5.6 A ^b	2.3	3.5	-	S
Dynamic							
Input Capacitance	C _{iss}		V _{GS} = 0 V, V _{DS} = - 25 V, f = 1.0 MHz, see fig. 9		480	-	pF
Output Capacitance	C _{oss}				320	-	
Reverse Transfer Capacitance	C _{rss}	t = 1			58	-	
Total Gate Charge	Qg			-	17	26	
Gate-Source Charge	Q _{gs}	$V_{GS} = -10 V$	$V_{GS} = -10 V$ $I_D = -9.7 A, V_{DS} = -0.8 max. rating. see fig. 17$		4.1	6.2	nC
Gate-Drain Charge	Q_gd		5 5	-	5.7	8.6	
Turn-On Delay Time	t _{d(on)}	V _{DD} =	V _{DD} = - 25 V, I _D = - 9.7 A,		8.2	12	ns
Rise Time	t _r	$R_G = 18 \Omega$, $R_D = 2.4 \Omega$, see fig. 16 (MOSFET switching times are		-	57	86	
Turn-Off Delay Time	t _{d(off)}		essentially independent of operating		12	18	
Fall Time	t _f		temperature)	-	25	38	
Internal Drain Inductance	L _D	6 mm (0.25"	Between lead, 6 mm (0.25") from		4.5	-	- nH
Internal Source Inductance	L _S	package and of die contac		-	7.5	-	
Drain-Source Body Diode Characteristics	5						
Continuous Source-Drain Diode Current	I _S		MOSFET symbol showing the integral reverse p - n junction diode		-	- 9.7	_
Pulsed Diode Forward Currenta	I _{SM}	integral reve			-	- 39	A
Body Diode Voltage	V _{SD}	T _J = 25 °C,	$I_{\rm S}$ = - 9.7 A, $V_{\rm GS}$ = 0 V ^b	-	-	- 6.3	V
Body Diode Reverse Recovery Time	t _{rr}	T 05 00 1	0.7.4 .11/.11 . 400.4/	56	110	280	ns
Body Diode Reverse Recovery Charge	Q _{rr}	$T_J = 25 \text{ °C}, I_F = -9.7 \text{ A}, \text{ dl/dt} = 100 \text{ A/}\mu\text{s}^{\text{b}}$		0.17	0.34	0.85	μC
Forward Turn-On Time	t _{on}	Intrinsic t	urn-on time is negligible (tu	rn-on is d	ominated	by Is and	<u></u> [])

Notes

a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 14). b. Pulse width \leq 300 μ s; duty cycle \leq 2 %.

Vishay Siliconix

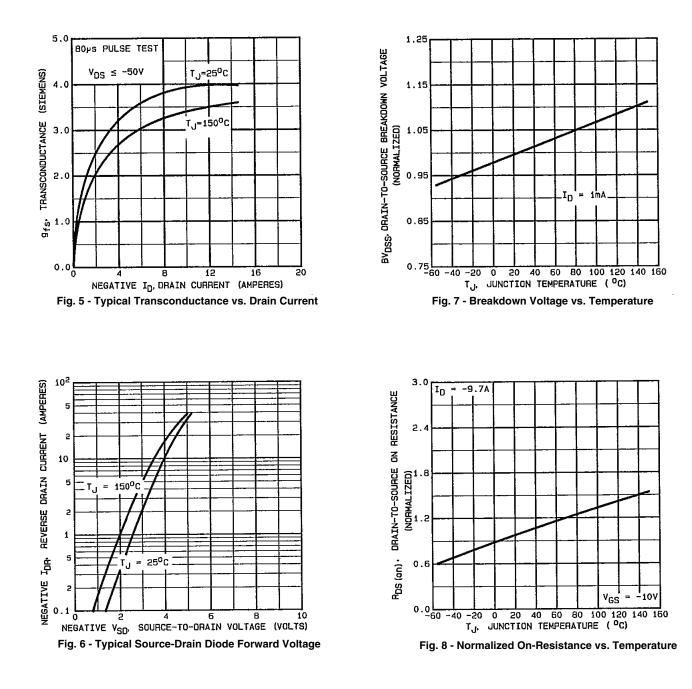
-7v


V_{GS}=-6V

4v

5

102


5

TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

Vishay Siliconix

Vishay Siliconix

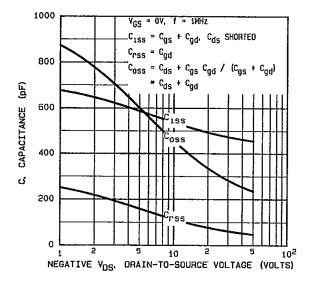


Fig. 9 - Typical Capacitance vs. Drain-to-Source Voltage

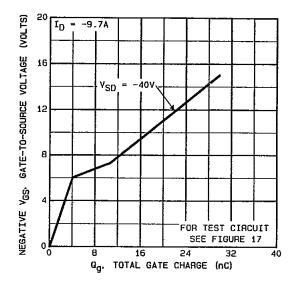


Fig. 10 - Typical Gate Charge vs. Gate-to-Source Voltage

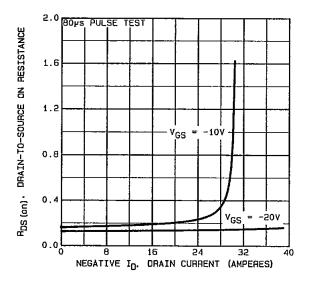


Fig. 11 - Typical On-Resistance vs. Drain Current

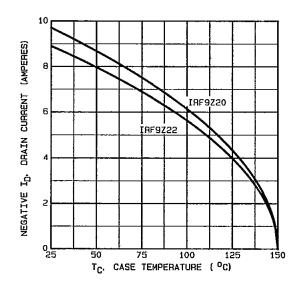


Fig. 12 - Maximum Drain Current vs. Case Temperature

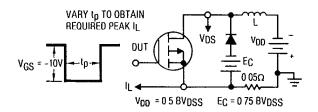
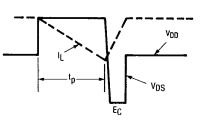



Fig. 13a - Clamped Inductive Test Circuit

SHA

Fig. 13b - Clamped Inductive Waveforms

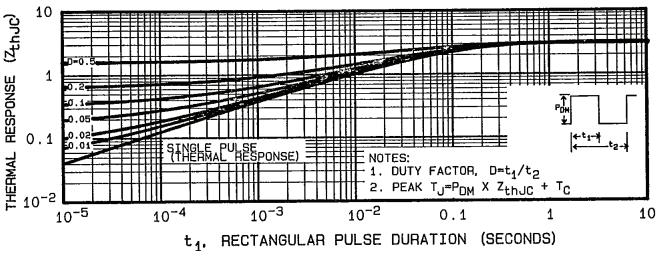


Fig. 14 - Maximum Effective Transient Thermal Impedance, Junction-to-Case vs. Pulse Duration

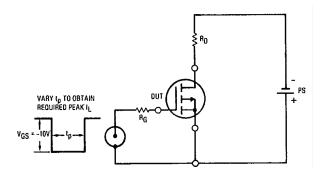
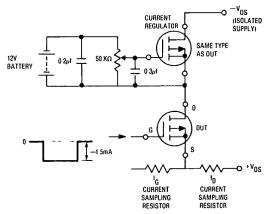



Fig. 15 - Switching Time Test Circuit

Vishay Siliconix

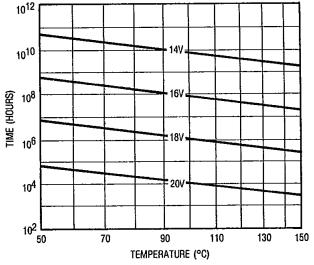
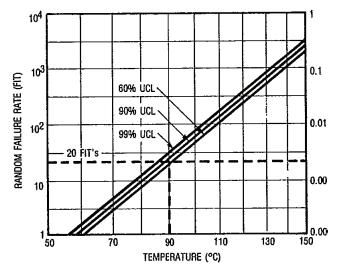
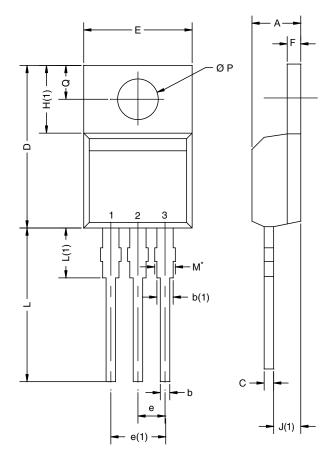


Fig. 17 - Typical Time to Accumulated 1 % Gate Failure

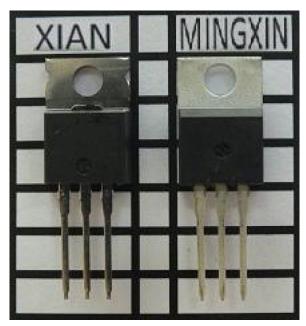



Fig. 18 - Typical High Temperature Reverse Bias (HTRB) Failure Rate

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see <u>www.vishay.com/ppg?91350</u>.

Vishay Siliconix

TO-220AB



	MILLIN	IETERS	INCHES		
DIM.	MIN.	MAX.	MIN.	MAX.	
А	4.25	4.65	0.167	0.183	
b	0.69	1.01	0.027	0.040	
b(1)	1.20	1.73	0.047	0.068	
С	0.36	0.61	0.014	0.024	
D	14.85	15.49	0.585	0.610	
E	10.04	10.51	0.395	0.414	
е	2.41	2.67	0.095	0.105	
e(1)	4.88	5.28	0.192	0.208	
F	1.14	1.40	0.045	0.055	
H(1)	6.09	6.48	0.240	0.255	
J(1)	2.41	2.92	0.095	0.115	
L	13.35	14.02	0.526	0.552	
L(1)	3.32	3.82	0.131	0.150	
ØΡ	3.54	3.94	0.139	0.155	
Q	2.60	3.00	0.102	0.118	

Notes

 * M = 1.32 mm to 1.62 mm (dimension including protrusion) Heatsink hole for HVM

Xi'an and Mingxin actual photo

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.