

TO-251 (IPAK) TO-252 (DPAK)

Pin Definition: 1. Gate

2. Drain
3. Source

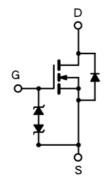
PRODUCT SUMMARY

V _{DS} (V)	$R_{DS(on)}(\Omega)$	I _D (A)
500	2.7 @ V _{GS} =10V	1.5

General Description

The TSM4ND50 N-Channel enhancement mode Power MOSFET is produced by planar stripe DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency switch mode power supply, power factor correction, electronic lamp ballast based on half bridge.

Features


- Low gate charge typical @ 12nC
- Low Crss typical @ 10pF
- Fast Switching
- Improved dv/dt capability
- ESD Protection

Ordering Information

Part No.	Package	Packing		
TSM4ND50CH C5	TO-251	75pcs / Tube		
TSM4ND50CH C5G	TO-251	75pcs / Tube		
TSM4ND50CP RO	TO-252	2.5Kpcs / 13" Reel		
TSM4ND50CP ROG	TO-252	2.5Kpcs / 13" Reel		

Note: "G" denotes for Halogen Free

Block Diagram

N-Channel MOSFET

Absolute Maximum Rating (Ta=25°C unless otherwise noted)

Parameter	Symbol	Limit	Unit
Drain-Source Voltage	V _{DS}	500	V
Gate-Source Voltage	V_{GS}	±30	V
Continuous Drain Current	I _D	3	Α
Pulsed Drain Current	I _{DM}	12	А
Continuous Source Current (Diode Conduction)	I _S	3	А
Peak Diode Recovery (Note 2)	dv/dt	4.5	V/ns
Single Pulse Drain to Source Avalanche Energy (Note 3)	E _{AS}	120	mJ
Total Power Dissipation @T _C =25°C	P _{DTOT}	45	W
Operating Junction and Storage Temperature Range	T _J , T _{STG}	-55 to +150	°C

Thermal Performance

Parameter	Symbol	Limit	Unit
Thermal Resistance - Junction to Case	R⊖ _{JC}	2.78	°C/W
Thermal Resistance - Junction to Ambient	R⊖ _{JA}	100	°C/W

Notes: Surface mounted on FR4 board t ≤ 10sec

500V N-Channel Power MOSFET

Electrical Specifications (Ta = 25°C unless otherwise noted)

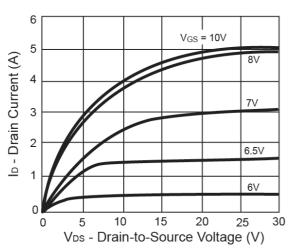
Parameter	Conditions	Symbol	Min	Тур	Max	Unit
Static						
Drain-Source Breakdown Voltage	$V_{GS} = 0V, I_D = 250uA$	BV_{DSS}	500			V
Drain-Source On-State Resistance	$V_{GS} = 10V, I_D = 1.5A$	R _{DS(ON)}	1	2.3	2.7	Ω
Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 50uA$	$V_{GS(TH)}$	3.0		4.8	V
Zero Gate Voltage Drain Current	$V_{DS} = 500V, V_{GS} = 0V$	I _{DSS}			1	uA
Gate Body Leakage	$V_{GS} = \pm 20V, V_{DS} = 0V$	I_{GSS}	1		±10	uA
Forward Transconductance	$V_{DS} = 15V, I_{D} = 1.5A$	g fs	1	1.5		S
Dynamic ^b						
Total Gate Charge	1/ 400\/ 1 24	Q_g		12		
Gate-Source Charge	$V_{DS} = 400V, I_{D} = 3A,$ $V_{GS} = 10V$	Q_gs		3.4		nC
Gate-Drain Charge	V _{GS} = 10V	Q_gd		6.4		
Input Capacitance	\	C_{iss}		310		
Output Capacitance	$V_{DS} = 25V, V_{GS} = 0V,$	C_{oss}	1	49		pF
Reverse Transfer Capacitance	f = 1.0MHz	C_{rss}		10		
Switching ^c						
Turn-On Delay Time		t _{d(on)}	1	22		
Turn-On Rise Time	$V_{GS} = 10V, I_D = 1.5A,$	t _r		9		0
Turn-Off Delay Time	$V_{DD} = 250V, R_G = 4.7\Omega$	$t_{d(off)}$		9		nS
Turn-Off Fall Time		t _f	1	4.5		
Source Drain Diode						
Source Drain Current		I_{SD}	1		3	Α
Diode Forward Voltage	$I_S = 3A$, $V_{GS} = 0V$	V_{SD}	1		1.6	V
Reverse Recovery Time	$V_{DD} = 40V, I_{S} = 3A,$	t _{fr}	-	315		nS
Reverse Recovery Charge	di/dt = 100A/us, T _J =150°C	Q_{fr}	-	940		uC
Reverse Recovery Current	(See test circuit)	I _{RRM}	-	7.2		Α

2/9

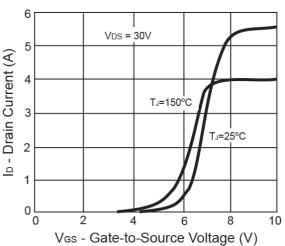
Notes:

- 1. Pulse test: pulse width ≤300uS, duty cycle ≤2%
- 2. I_{SD} <4.5A, di/dt<200A/us, VDD<BV_{DSS}
- 3. Starting $V_{DD} = 50V$, H=27mH, $T_J=25$ °C
- 4. Pulse width limited by safe operating area.

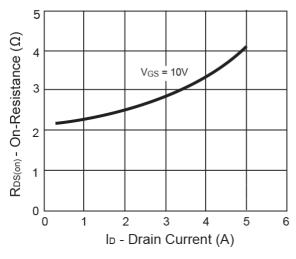
Version: D11

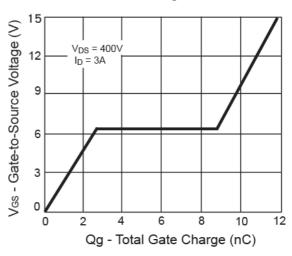


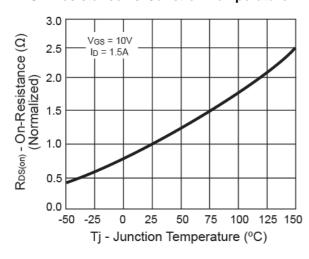
500V N-Channel Power MOSFET

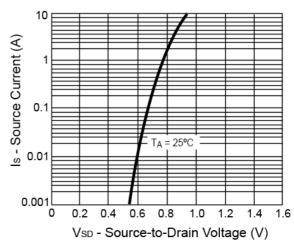


Electrical Characteristics Curve (Ta = 25°C, unless otherwise noted)


Output Characteristics


Transfer Characteristics


On-Resistance vs. Drain Current

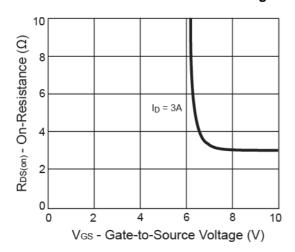

Gate Charge

On-Resistance vs. Junction Temperature

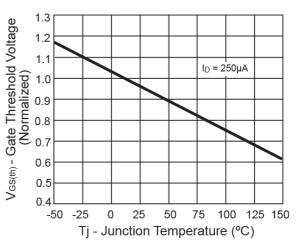
Source-Drain Diode Forward Voltage

Version: D11

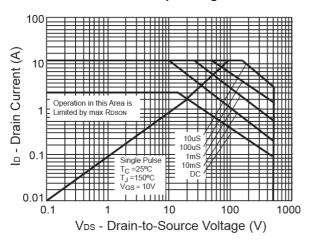
3/9

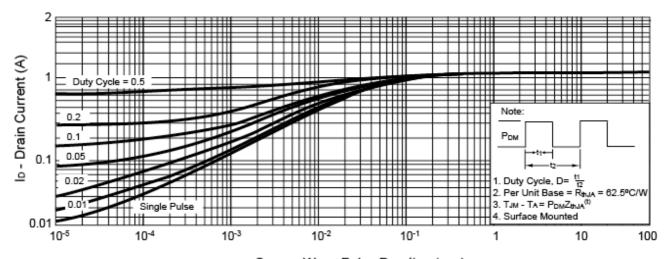


500V N-Channel Power MOSFET



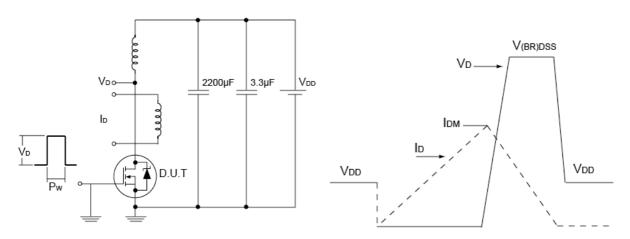
Electrical Characteristics Curve (Ta = 25°C, unless otherwise noted)


On-Resistance vs. Gate-Source Voltage

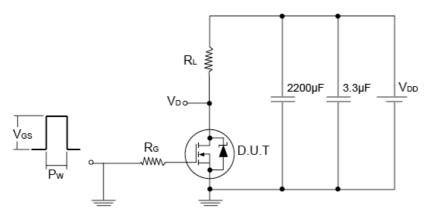

Threshold Voltage

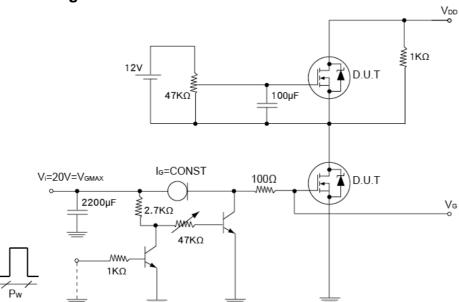
Maximum Safe Operating Area

Normalized Thermal Transient Impedance, Junction-to-Ambient



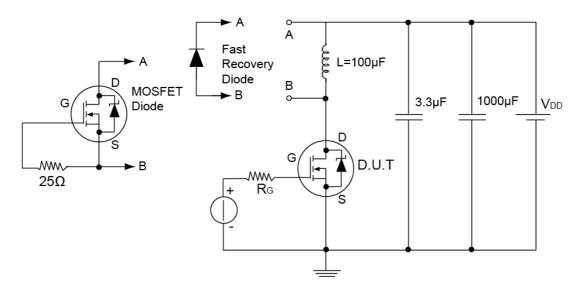
Square Wave Pulse Duration (sec)



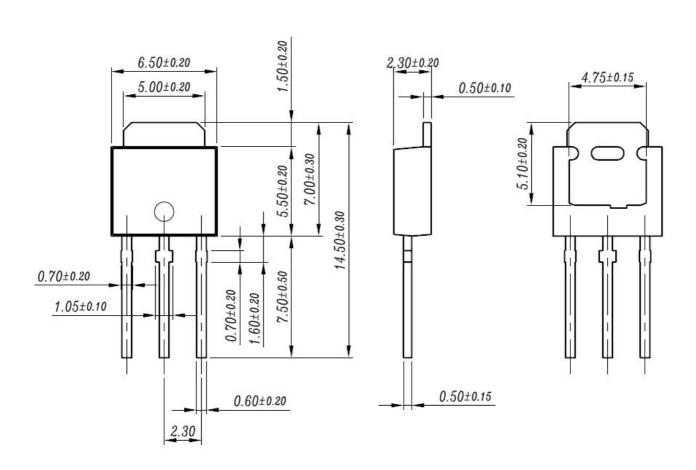

Unclamped Inductive Load Test Circuit and Waveform

Switching Time Test Circuits for Resistive Load

Gate Charge Test Circuit



500V N-Channel Power MOSFET



Test Circuit for Inductive Load Switching and Diode Recovery Times



TO-251 Mechanical Drawing

Marking Diagram

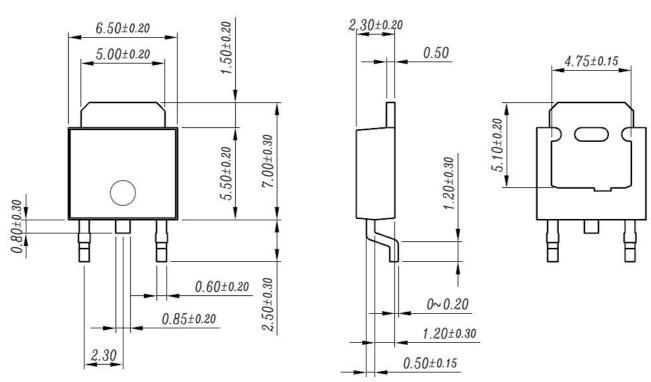
Y = Year Code

M = Month Code

(A=Jan, B=Feb, C=Mar, D=Apl, E=May, F=Jun, G=Jul, H=Aug, I=Sep, J=Oct, K=Nov, L=Dec)

= Month Code for Halogen Free Product
(O=Jan, P=Feb, Q=Mar, R=Apl, S=May, T=Jun, U=Jul, V=Aug, W=Sep, X=Oct, Y=Nov, Z=Dec)

7/9


L = Lot Code

Version: D11

TO-252 Mechanical Drawing

Unit: Millimeters

Marking Diagram

Y = Year Code

M = Month Code

(A=Jan, B=Feb, C=Mar, D=Apl, E=May, F=Jun, G=Jul, H=Aug, I=Sep, J=Oct, K=Nov, L=Dec)

Month Code for Halogen Free Product
 (O=Jan, P=Feb, Q=Mar, R=Apl, S=May, T=Jun, U=Jul, V=Aug, W=Sep, X=Oct, Y=Nov, Z=Dec)

8/9

L = Lot Code

Version: D11

TSM4ND50500V N-Channel Power MOSFET

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.