N-CHANNEL POWER MOSFET

SML20J175

- Fast Switching and Low leakage
- 100% Avalanche Tested
- Popular SOT-227 Package

StarMOS is a new generation of high voltage N-Channel enhancement mode power MOSFET's. This new technology minimises the JFET effect, increases packing density and reduces the on-resistance. StarMOS also achieve faster switching speeds through optimised gate layout.

ABSOLUTE MAXIMUM RATINGS (T_C = 25°C unless otherwise stated)

VDS	Drain – Source Voltage	200V
V _{GS}	Gate – Source Voltage Continuous	
М	Gate – Source Voltage Transient	±30V
ID	Continuous Drain Current	175A
IDM	Pulsed Drain Current (1)	700A
R _{DS(on)}	On-State Drain-Source Resistance	0.011Ω
PD	Total Power Dissipation	700W
	Derate Above 25°C	5.6W/°C
E _{AR}	Repetitive Avalanche Energy ⁽¹⁾	30mJ
E _{AS}	Single Pulse Avalanche Energy ⁽⁴⁾	3600mJ
IAR	Avalanche Current (Repetitive and Non-Repetitive) $^{(1)}$	175A
Тј	Junction Temperature Range	-55 to +150°C
T _{stg}	Storage Temperature Range	-55 to +150°C
ТL	Lead Temperature: 0.063" from Case for 10 sec	300°C

THERMAL / PACKAGE CHARACTERISTICS

Symbols	Parameters	Min.	Тур.	Max.	Units
R _{0JC}	Thermal Resistance, Junction To Case			0.18	°C M
θJA	Thermal Resistance, Junction To Ambient	ce, Junction To Ambient		0.40	C/VV
V _{isolation}	RMS Voltage (50-60Hz Sinusoidal waveform from terminals to mounting base for 1min)2500				V
Torque	Device Mounting Screws and Electrical Terminations			1.4	Nm

Notes

(1) Repetitive Rating: Pulse width limited by maximum junction temperature

(2) Pulse Width \leq 380us, $\delta \leq$ 2%

(3) See MIL-STD-750 Method 3471

(4) Peak I_L = 175A, L = 235 μ H, R_G = 25 Ω , Starting T_J = 25°C

Semelab Limited reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

A subsidiary of TT electronics plc. Document Number 8590 Issue 1 Page 1 of 3

Website: http://www.semelab-tt.com

		Test Conditions	Min.	Тур	Max.	Units
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} = 0 I _D = 250μA	200			V
I _{D(on)} ⁽²⁾	On-State Drain Current	$(V_{DS} > I_{D(on)} \times R_{DS(on)} MAX$ $V_{GS} = 10V$	175			А
R _{DS(on)} ⁽²⁾	Drain-Source On-State Resistance	$V_{GS} = 10V$ 0.5 $I_{D(cont)}$			0.011	Ω
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$ $I_D = 5mA$	2		4	V
I _{GSS}	Gate-Source Leakage Current	$V_{GS} = \pm 20V$			±100	nA
I _{DSS}	Zero Gate Voltage Drain Current	$V_{GS} = 0$ $V_{DS} = V_{DSS}$			100	μA
		$V_{DS} = 0.8V_{DSS}$ $T_J = 125^{\circ}C$			500	

DYNAMIC CHARACTERISTICS

				pF
			1350	
Qg ⁽³⁾	Total Gate Charge	$V_{GS} = 10V$	690	
Q _{gs}	Gate-Source Charge	$I_D = 0.5 I_{D(cont)}$	95	nC
Q _{gd}	Gate-Drain Charge	$V_{DS} = 0.5 V_{DSS}$	290	
^t d(on)	Turn-On Delay Time	V _{GS} = 15V	20	
t _r	Rise Time	$V_{DD} = 0.5 V_{DSS}$	40	nc
^t d(off)	Turn-Off Delay Time	$I_D = 0.5 I_{D(cont)}$	75	115
t _f	Fall Time	$R_{G} = 0.6\Omega$	10	

SOURCE-DRAIN DIODE CHARACTERISTICS

					Δ
(1)	Pulsed Source Current			700	4
V _{SD} ⁽²⁾	Diode Forward Voltage	$I_{S} = -I_{D(cont)}$ $V_{GS} = 0$		1.3	V
t _{rr}	Reverse Recovery Time	$I_S = -I_D(cont)$		460	ns
Q _{rr}	Reverse Recovery Charge	dls/dt = 100A/µs		7	μC

Dimensions in mm (inches)

Pins 1 & 4 - Source Pin 2 - Drain

Pin 3 - Gate

* Source terminals are shorted internally. Current handling capability is equal for either Source terminal.