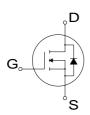


TO-247AD Package Outline.


Dimensions in mm (inches)

Pin 1 - Gate

Pin 2 - Drain

Pin 3 - Source

N-CHANNEL ENHANCEMENT MODE HIGH VOLTAGE POWER MOSFETS

V_{DSS} 1200V I_{D(cont)} R_{DS(on)} 1.600Ω

- **Faster Switching**
- Lower Leakage
- 100% Avalanche Tested
- Popular TO-247 Package

StarMOS is a new generation of high voltage N-Channel enhancement mode power MOSFETs. This new technology minimises the JFET effect, increases packing density and reduces the on-resistance. StarMOS also achieves faster switching speeds through optimised gate layout.

ABSOLUTE MAXIMUM RATINGS (T_{case} = 25°C unless otherwise stated)

V _{DSS}	Drain – Source Voltage	1200	V	
I _D	Continuous Drain Current	8	А	
I _{DM}	Pulsed Drain Current ¹	32	А	
V _{GS}	Gate – Source Voltage	±30	V	
V _{GSM}	Gate – Source Voltage Transient	±40		
D	Total Power Dissipation @ T _{case} = 25°C	280	W	
P_{D}	Derate Linearly	2.24	W/°C	
T_J , T_{STG}	Operating and Storage Junction Temperature Range	-55 to 150	- °C	
TL	Lead Temperature : 0.063" from Case for 10 Sec.	300		
I _{AR}	Avalanche Current ¹ (Repetitive and Non-Repetitive)	8	А	
E _{AR}	Repetitive Avalanche Energy ¹	30	mJ	
E _{AS}	Single Pulse Avalanche Energy ²	1210	1113	

¹⁾ Repetitive Rating: Pulse Width limited by maximum junction temperature.

Semelab PIc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612. E-mail: sales@semelab.co.uk

Website: http://www.semelab.co.uk

²⁾ Starting $T_{.l} = 25^{\circ}C$, L = 37.81mH, $R_{.G} = 25\Omega$, Peak $I_{.l} = 8$ A

STATIC ELECTRICAL RATINGS ($T_{case} = 25^{\circ}C$ unless otherwise stated)

	Characteristic	Test Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain – Source Breakdown Voltage	$V_{GS} = 0V , I_{D} = 250 \mu A$	1200			V
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = V_{DSS}$			25	
	$(V_{GS} = 0V)$	$V_{DS} = 0.8V_{DSS}$, $T_{C} = 125^{\circ}C$			250	μΑ
I _{GSS}	Gate – Source Leakage Current	$V_{GS} = \pm 30V$, $V_{DS} = 0V$			±100	nΑ
V _{GS(TH)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 1.0$ mA	2		4	V
I _{D(ON)}	On State Drain Current ²	$V_{DS} > I_{D(ON)} \times R_{DS(ON)} Max$ $V_{GS} = 10V$	8			А
R _{DS(ON)}	Drain – Source On State Resistance ²	$V_{GS} = 10V$, $I_D = 0.5 I_D$ [Cont.]			1.60	Ω

DYNAMIC CHARACTERISTICS

	Characteristic	Test Conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input Capacitance	$V_{GS} = 0V$		3050		
C _{oss}	Output Capacitance	V _{DS} = 25V		265		pF
C _{rss}	Reverse Transfer Capacitance	f = 1MHz		121		
Qg	Total Gate Charge ³	V _{GS} = 10V		150		
Q _{gs}	Gate – Source Charge	$V_{DD} = 0.5 V_{DSS}$		15		nC
Q _{gd}	Gate - Drain ("Miller") Charge	I _D = I _D [Cont.] @ 25°C		78		
t _{d(on)}	Turn-on Delay Time	V _{GS} = 15V		12		
t _r	Rise Time	$V_{DD} = 0.5 V_{DSS}$		11		ne
t _{d(off)}	Turn-off Delay Time	I _D = I _D [Cont.] @ 25°C		60		ns
t _f	Fall Time	$R_G = 1.6\Omega$		22		

SOURCE – DRAIN DIODE RATINGS AND CHARACTERISTICS

	Characteristic	Test Conditions	Min.	Тур.	Max.	Unit
IS	Continuous Source Current	(Body Diode)			8	Α
I _{SM}	Pulsed Source Current ¹	(Body Diode)			32	
V _{SD}	Diode Forward Voltage ²	$V_{GS} = 0V$, $I_S = -I_D$ [Cont.]			1.3	V
t _{rr}	Reverse Recovery Time	$I_S = -I_D$ [Cont.], $dI_S / dt = 100A/\mu s$		750		ns
Q _{rr}	Reverse Recovery Charge	$I_S = -I_D$ [Cont.], $dI_S / dt = 100A/\mu s$		9		μС

THERMAL CHARACTERISTICS

	Characteristic	Min.	Тур.	Max.	Unit
$R_{\theta JC}$	Junction to Case			0.45	°C/W
$R_{\theta JA}$	Junction to Ambient			40	0, 11

- 1) Repetitive Rating: Pulse Width limited by maximum junction temperature.
- 2) Pulse Test: Pulse Width $< 380 \mu S$, Duty Cycle < 2%
- 3) See MIL-STD-750 Method 3471

 ${\sf CAUTION-Electrostatic\ Sensitive\ Devices.\ Anti-Static\ Procedures\ Must\ Be\ Followed.}$

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612.

Document Number 3348 Issue 1

E-mail: sales@semelab.co.uk Website: http://www.semelab.co.uk