

Micro Commercial Components

Micro Commercial Components 20736 Marilla Street Chatsworth CA 91311

Phone: (818) 701-4933 Fax: (818) 701-4939

BDX33 **THRU** BDX33D

Features

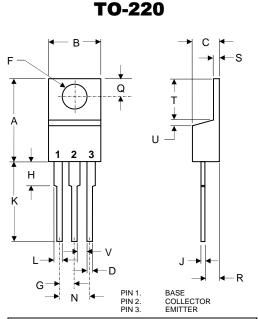
- Lead Free Finish/RoHS Compliant(Note 1) ("P" Suffix designates RoHS Compliant. See ordering information)
 Designed For Complementary Use with BDX34, BDX34A, BDX34B,
- BDX34C and BDX34D
- 70W at 25°C Cass Temperature
- 10A Continuous Collector Current
- Minimum h_{FE} of 750 at 3.0V, 3.0A Epoxy meets UL 94 V-0 flammability rating

Moisure Sensitivity Level 1 Mounting Torgue: 5 in-lbs Maximum Absolute Maximum Ratings @ 25°C Unless Otherwise Noted

Symbol	Rating	Value	Unit
-	Collector-Base Voltage (I _E =0)		
V_{CBO}	BDX33	45	
	BDX33A	60	
	BDX33B	80	V
	BDX33C	100	
	BDX33D	100	
	Collector-Emitter Voltage (I _B =0)		
V_{CEO}	BDX33	45	
	BDX33A	60	
	BDX33B	80	V
	BDX33C	100	
	BDX33D	100	
V_{EBO}	Emitter-Base Voltage	5.0	V
I _C	Continuous Collector Current	10	Α
I _B	Continuous Base Current	0.3	Α
P _{TOT}	Continuous Device Dissipation at (or below) 25°C	70	W
	Case Temperature (see Note2)		
P _{TOT}	Continuous Device Dissipation at (or below) 25℃	2.0	W
	Free Air Temperature (see Note 3)		
T_J	Operating Free Air Temperature Range	-55~+150	$^{\circ}\mathbb{C}$
T_{STG}	Storage Temperature Range	-55~+150	$^{\circ}\mathbb{C}$
T_A	Operating Free-Air Temperature Range	-55~+150	$^{\circ}\mathbb{C}$

Notes: 1. High Temperature Solder Exemption Applied, see EU Directive Annex 7.

2. Derate Linearly to 150℃ Case Temperature at the Rate of 0.56 W/℃


3. Derate Linearly to 150°C Free Air Temperature at the Rate of 16m W/°C

Electrical Characteristics @ 25°C Unless Otherwise Specified

Symbol	Parameter	Min	Тур	Max	Unit
	Collector-Emitter Breakdown				
	Voltage				
$V_{(BR)CEO}$	$(I_C=100\text{mA}, I_B=0,\text{see note 3})$				
	BDX33	45			V
	BDX33A	60			V
	BDX33B	80			
	BDX33C	100			
	BDX33D	100			

NPN Silicon

Power Darlingtons

DIMENSIONS						
	INCHES		N			
DIM	MIN	MAX	MIN	MAX	NOTE	
Α	.560	.625	14.22	15.88		
В	.380	.420	9.65	10.67		
С	.140	.190	3.56	4.82		
D	.020	.045	0.51	1.14		
F	.139	.161	3.53	4.09	Ø	
G	.190	.110	2.29	2.79		
Н		.250		6.35		
J	.012	.025	0.30	0.64		
K	.500	.580	12.70	14.73		
L	.045	.060	1.14	1.52		
N	.190	.210	4.83	5.33		
Q	.100	.135	2.54	3.43		
R	.080	.115	2.04	2.92		
S	.045	.055	1.14	1.39		
T	.230	.270	5.84	6.86		
U		.050		1.27		
V	.045		1.15			

Micro Commercial Components

Symbol	Parameter			Тур	Max	Unit
-	Collector-Emitter Cut-Off Current					
	$(V_{CE}=30V, I_{B}=0)$	BDX33			0.5	
	$(V_{CE}=30V, I_{B}=0)$	BDX33A			0.5	
I _{CEO}	$(V_{CE}=40V, I_{B}=0)$	BDX33B			0.5	
	$(V_{CE}=50V, I_{B}=0)$	BDX33C			0.5	
	$(V_{CE}=60V, I_{B}=0)$	BDX33D			0.5	mA
	$(V_{CE}=30V, I_{B}=0, T_{C}=100^{\circ}C)$	BDX33			10	
	$(V_{CE}=30V, I_{B}=0, T_{C}=100^{\circ}C)$	BDX33A			10	
	$(V_{CE}=40V, I_{B}=0, T_{C}=100^{\circ}C)$	BDX33B			10	
	(V _{CE} =50V, I _B =0, T _C =100°ℂ)	BDX33C			10	
	(V _{CE} =60V, I _B =0, T _C =100°C)	BDX33D			10	
	Collector Cut-Off Current					
	$(V_{CB}=45V, I_{E}=0)$	BDX33			1.0	
	(V _{CB} =60V, I _E =0)	BDX33A			1.0	
I _{CBO}	$(V_{CB}=80V, I_{E}=0)$	BDX33B			1.0	
	$(V_{CB}=100V, I_{E}=0)$	BDX33C			1.0	
	$(V_{CB}=100V, I_{E}=0)$	BDX33D			1.0	mA
	(V _{CB} =45V, I _E =0, T _C =100°C)	BDX33			5.0	1117 (
	(V _{CB} =60V, I _E =0, T _C =100°C)	BDX33A			5.0	
	$(V_{CB}=80V, I_{E}=0, T_{C}=100^{\circ}C)$	BDX33B			5.0	
	$(V_{CB}=100V, I_{E}=0, T_{C}=100^{\circ}C)$	BDX33C			5.0	
	(V _{CB} =120V, I _E =0, T _C =100°C)	BDX33D			5.0	
I _{EBO}	Emitter Cut-Off Current					
250	$(V_{EB}=5.0V, I_{C}=0)$				10	mA
h _{FE}	Forward Current Transfer Ratio					
	$(V_{CE}=3.0V, I_{C}=4.0A)$	BDX33	750			
	$(V_{CE}=3.0V, I_{C}=4.0A)$	BDX33A	750			
	$(V_{CE}=3.0V, I_{C}=3.0A)$ (see notes 4 and 5)	BDX33B	750			
	$(V_{CE}=3.0V, I_{C}=3.0A)$	BDX33C	750			
	$(V_{CE}=3.0V, I_{C}=3.0A)$	BDX33D	750			
$V_{BE(ON)}$	Base-Emitter Voltage					
	(V _{CE} =3.0V, I _C =4.0A)	BDX33			2.5	
	$(V_{CE}=3.0V, I_{C}=4.0A)$	BDX33A			2.5	V
	$(V_{CE}=3.0V, I_{C}=3.0A)$ (see notes 4 and 5)	BDX33B			2.5	
	$(V_{CE}=3.0V, I_{C}=3.0A)$	BDX33C			2.5	
1/	(V _{CE} =3.0V, I _C =3.0A)	BDX33D			2.5	
$V_{CE(SAT)}$	Collector-Emitter Saturation Voltage	BDX33			2.5	
	(I _B =8.0mA, I _C =4.0A) (I _B =8.0mA, I _C =4.0A)	BDX33A			2.5	
	$(I_B=6.0\text{mA}, I_C=4.0\text{A})$ (see notes 4 and 5)	BDX33A BDX33B			2.5	V
	(I _B =6.0mA, I _C =3.0A) (see notes 4 and 3)	BDX33C			2.5	
	(I _B =6.0mA, I _C =3.0A)	BDX33D			2.5	
V _{EC}	Parallel Diode Forward Voltage	בטאסטט			2.0	
¥ EU	(I _E =8.0A, I _B =0)				4.0	V

NOTES: 4. These parameters must be measured using pulse techniques, tp=300µs, duty cycle≤2%.

Thermal Characteristics

Symbol	Parameter	Min	Тур	Max	Unit
R _{euc}	Junction to Case Thermal Resistance			1.78	°C/W
$R_{\theta JA}$	Junction to Free Air Thermal Resistance			62.5	°C/W

Resistive-Load-Switching Characteristics at 25 $^{\circ}$ Case Temperature

Symbol	Parameter	Test Conditions ⁺	Min	Тур	Max	Unit
t _{on}	Turn-On Time	I _C =3.0A, I _{B(on)} =12mA, I _{B(off)} =-12mA		1.0		μ s
t _{off}	Turn-Off Time	$V_{BE(off)}$ =-3.5V, R _L =10 Ω , t _P =20 μ s, dc \leq 2%		5.0		μ s

⁺ Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

^{5.} These parameters must be measured using voltage-sensing contacts, separate from the current carrying contacts.

BDX33 thru BDX33D

Micro Commercial Components

TYPICAL DC CURRENT GAIN vs

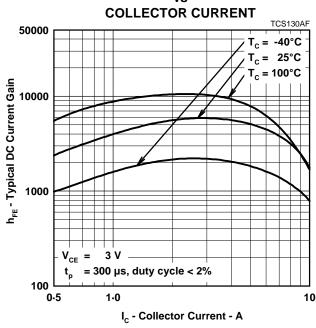


Figure 1.

COLLECTOR-EMITTER SATURATION VOLTAGE

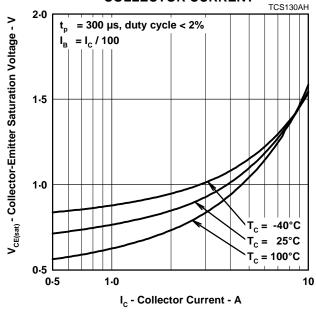
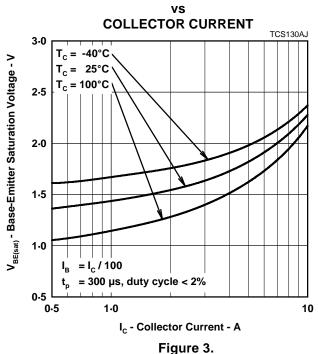



Figure 2.

BASE-EMITTER SATURATION VOLTAGE

THERMAL INFORMATION

MAXIMUM POWER DISSIPATION

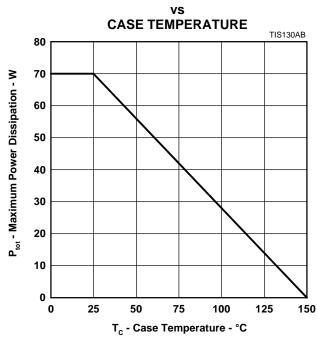


Figure 4.

Micro Commercial Components

Ordering Information:

Device	Packing		
Part Number-BP	Bulk; 1Kpcs/Box		

IMPORTANT NOTICE

Micro Commercial Components Corp. reserves the right to make changes without further notice to any product herein to make corrections, modifications, enhancements, improvements, or other changes. **Micro Commercial Components Corp.** does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold **Micro Commercial Components Corp.** and all the companies whose products are represented on our website, harmless against all damages.

LIFE SUPPORT

MCC's products are not authorized for use as critical components in life support devices or systems without the express written approval of Micro Commercial Components Corporation.

CUSTOMER AWARENESS

Counterfeiting of semiconductor parts is a growing problem in the industry. Micro Commercial Components (MCC) is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. MCC strongly encourages customers to purchase MCC parts either directly from MCC or from Authorized MCC Distributors who are listed by country on our web page cited below. Products customers buy either from MCC directly or from Authorized MCC Distributors are genuine parts, have full traceability, meet MCC's quality standards for handling and storage. MCC will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. MCC is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.