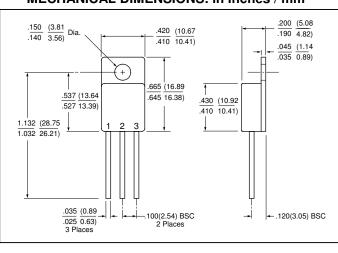


_


TECHNICAL DATA DATA SHEET 472, REV -

HERMETIC POWER MOSFET N-CHANNEL

DESCRIPTION: 1000 VOLT, 3.5 OHM MOSFET IN A HERMETIC TO-257 PACKAGE.

MAXIMUM RATINGS ALL RATINGS A	ARE AT T = 2	25°C UNL	ESS OTI	HERWISE	SPECIFIED.
RATING	SYMBÔL	MIN.	TYP.	MAX.	UNITS
GATE TO SOURCE VOLTAGE	V _{GS}	-	-	±20	Volts
CONTINUOUS DRAIN CURRENT @ $T_c = 25^{\circ}C$	I _D	-	-	3.9	Amps
PULSED DRAIN CURRENT@ $T_c = 25^{\circ}C$	I _{DM}	-	-	16	Amps(pk)
OPERATING AND STORAGE TEMPERATURE	T _{OP} /T _{STG}	-55	-	+150	°C
TERMAL RESISTANCE JUNCTION TO CASE	$R_{ ext{ heta}JC}$	-	-	1.2	°C/W
TOTAL DEVICE DISSIPATION @ T _C = 25°C	PD	-	-	100	Watts
ELECTRICAL CHARACTERISTICS		1	I	ſ	
DRAIN TO SOURCE BREAKDOWN VOLTAGE $V_{GS} = 0V, I_D = 1.0mA$	BV _{DSS}	1000	-	-	Volts
GATE THRESHOLD VOLTAGE $V_{DS} = V_{GS}$, $I_D = 250 \mu A$	V _{GS(TH)}	2.0	-	4.0	
DRAIN TO SOURCE ON STATE RESISTANCE V_{GS} = 10Vdc, I_D = 2.5A PULSE TEST, t \leq 300 µs, DUTY CYCLE d \leq 2%	R _{DS(ON)}	-	-	3.5	Ω
ZERO GATE VOLTAGE DRAIN CURRENT		-	-		
$V_{DS} = 0.8 \text{xMax}$. Rating, $V_{GS} = 0 \text{Vdc}$	I _{DSS}			25	μA
$V_{DS} = 0.8$ Max. Rating				050	
$V_{GS} = 0$ Vdc, $T_J = 125^{\circ}$ C				250	
GATE TO BODY LEAKAGE CURRENT $V_{GS} = \pm 20 V dc$ TOTAL GATE CHARGE $V_{GS} = 10 V dc$	I _{GSS}	-	-	±100	nA
TOTAL GATE CHARGE $V_{GS} = 10$ Vdc,GATE TO SOURCE CHARGE $V_{DS} = 400V$,	Q _g	51 5.4	-	120 12	nC
$\begin{array}{c} \text{GATE TO SOURCE CHARGE} & \text{V}_{\text{DS}} = 400 \text{V}, \\ \text{GATE TO DRAIN CHARGE} & \text{I}_{\text{D}} = 3.9 \text{A} \end{array}$	Q _{gs} Q _{qd}	29		75	
TURN ON DELAY TIME $V_{GS} = 15 \text{ Vdc}$	t _{d(ON)}	-	_	30	nsec
$RISE TIME V_{DD} = 400,$	t _r			50	
TURN OFF DELAY TIME $I_D = 3.9A$	t _{d(OFF)}			170	
FALL TIME $R_G = 9.1\Omega$	`t _f			50	
FORWARD VOLTAGE $T_J = 25^{\circ}C, I_S = 3.9A, V_{GS} = 0V$	V_{SD}	-	-	1.8	Volts
PULSE TEST, t \leq 300 μ s, DUTY CYCLE d \leq 2%					
REVERSE RECOVERY TIME $T_J = 25^{\circ}C, I_S = 3.9A$	t _{rr}	-	-	1000	nsec
REVERSE RECOVERY CHARGE di/dt = 100A/µsec					
$V_{\text{DD}} \le 50 V$	Q _{rr}	-	-	5.6	μC
INPUT CAPACITANCE $V_{DS} = 25 \text{ Vdc},$	C _{iss}	-	1700	-	pF
OUTPUT CAPACITANCE $V_{GS} = 0 Vdc,$	C _{oss}		250		
REVERSE TRANSFER CAPACITANCEf = 1 MHz	C _{rss}		100		

SENSITRON DATA SHEET 472, REV. -

MECHANICAL DIMENSIONS: in Inches / mm

PINOUT TABLE

DEVICE TYPE	PIN 1	PIN 2	PIN 3
MOSFET, TO-257 PACKAGE	DRAIN	SOURCE	GATE

TECHNICAL DATA

DISCLAIMER:

1- The information given herein, including the specifications and dimensions, is subject to change without prior notice to improve product characteristics. Before ordering, purchasers are advised to contact the Sensitron Semiconductor sales department for the latest version of the datasheet(s).

2- In cases where extremely high reliability is required (such as use in nuclear power control, aerospace and aviation, traffic equipment, medical equipment, and safety equipment), safety should be ensured by using semiconductor devices that feature assured safety or by means of users' fail-safe precautions or other arrangement.

3- In no event shall Sensitron Semiconductor be liable for any damages that may result from an accident or any other cause during operation of the user's units according to the datasheet(s). Sensitron Semiconductor assumes no responsibility for any intellectual property claims or any other problems that may result from applications of information, products or circuits described in the datasheets.
4- In no event shall Sensitron Semiconductor be liable for any failure in a semiconductor device or any secondary damage resulting from use at a value exceeding the absolute maximum rating.

5- No license is granted by the datasheet(s) under any patents or other rights of any third party or Sensitron Semiconductor.
6- The datasheet(s) may not be reproduced or duplicated, in any form, in whole or part, without the expressed written permission of Sensitron Semiconductor.

7- The products (technologies) described in the datasheet(s) are not to be provided to any party whose purpose in their application will hinder maintenance of international peace and safety nor are they to be applied to that purpose by their direct purchasers or any third party. When exporting these products (technologies), the necessary procedures are to be taken in accordance with related laws and regulations.