

TECHNICAL DATA DATA SHEET 317, REV -

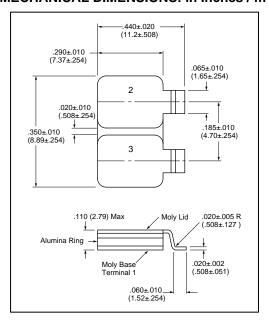
HERMETIC POWER MOSFET N-CHANNEL

FEATURES:

- 100 Volt, 0.16 Ohm, 14A MOSFET
- Fast Switching
- Low R_{DS (on)}
- Equivalent to IRF130 Series

MAXIMUM RATINGS

ALL RATINGS ARE AT $T_c = 25^{\circ}$ C UNLESS OTHERWISE SPECIFIED.


RATING	SYMBOL	MIN.	TYP.	MAX.	UNITS
GATE TO SOURCE VOLTAGE	V_{GS}	-	-	±20	Volts
ON-STATE DRAIN CURRENT @ $T_C = 100$ °C	I _D	-	-	14	Amps
OPERATING AND STORAGE TEMPERATURE	T_{OP}/T_{STG}	-55	-	+150	°C
TOTAL DEVICE DISSIPATION @ T _C = 25°C	P_{D}	-	-	96	Watts
THERMAL RESISTANCE, JUNCTION TO CASE	R_{thJC}	-	-	1.3	°C/W

ELECTRICAL CHARACTERISTICS

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			BV_{DSS}	100	-	-	Volts
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$V_{GS} =$	$0V, I_D = 1.0mA$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	DRAIN TO SOURCE ON-STATE VOLTAGE	ΞE	$V_{DS(ON)}$	-		100	Volts
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V_{GS}	$= 10V, I_D = 10A$, ,				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	STATIC DRAIN TO SOURCE ON STATE	RESISTANCE	R _{DS(ON)}	-	0.14	0.16	Ω
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$V_{GS} = 10V, I_{D} = 2$	20A	,				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	GATE THRESHOLD VOLTAGE V _{DS} = V	V_{GS} , $I_{D} = 250 \mu A$	$V_{GS(th)}$	2.0	2.8	4.0	Volts
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	FORWARD TRANSCONDUCTANCE			4.6	7.0	-	S(1/Ω)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$V_{DS} \ge I_{D (ON)} X, R_{DS (ON)} Max$	$x., I_{DS} = 0.6 X I_{D}$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ZERO GATE VOLTAGE DRAIN CURREN	Т		-	-		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$V_{DS} = Max. Rating, V_{GS} = 0V$		I_{DSS}			250	μΑ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$V_{DS} = 0.8xMax$. Rating, $V_{GS} =$	$0V, T_J = 125^{\circ}C$				1000	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	GATE TO SOURCE LEAKAGE FORWARI	$V_{GS} = 20V$	I_{GSS}	-	-	100	nA
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	GATE TO SOURCE LEAKAGE REVERSE	$V_{GS} = -20V$				-100	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TURN ON DELAY TIME	$V_{DD} = 50V$,	t _{d(ON)}	-	9.5	14	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	RISE TIME	$I_D = 7.0A$,	`t _r		42	63	nsec
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	TURN OFF DELAY TIME	$R_G = 12\Omega$,	$t_{d(OFF)}$		22	33	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	FALL TIME	$V_{GS} = 10V$			25	38	
REVERSE RECOVERY TIME $T_J = 25^{\circ}C, \qquad t_{rr} \qquad - \qquad - \qquad 250$ $I_f = 14A, \qquad \qquad di_f/ds = 100A/\mu sec,$ $INPUT CAPACITANCE \qquad V_{GS} = 0 \ V \qquad C_{iss} \qquad - \qquad 650 \qquad - \qquad 0$ $OUTPUT CAPACITANCE \qquad V_{DS} = 25 \ V \qquad C_{oss} \qquad 240 \qquad pF$	DIODE FORWARD VOLTAGE $T_C = 2$	25°C, I _S = 14A,	V_{SD}	-	1.0	2.5	Volts
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$V_{GS} = 0V$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	REVERSE RECOVERY TIME	$T_{J} = 25^{\circ}C$	t _{rr}	-	-	250	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							nsec
OUTPUT CAPACITANCE V _{DS} = 25 V C _{oss} 240 pF	di _F /c	ds = 100A/μsec,					
= 7			C _{iss}	-	650	-	
	OUTPUT CAPACITANCE	$V_{DS} = 25 \text{ V}$	C_{oss}		240		pF
	REVERSE TRANSFER CAPACITANCE	f = 1.0MHz			44		-

DATA SHEET 317 REVISION -

MECHANICAL DIMENSIONS: in Inches / m

SHD-4A

PINOUT TABLE

DEVICE TYPE	PIN 1	PIN 2	PIN 3
N-CHANNEL MOSFET	DRAIN	SOURCE	GATE
SHD-4A PACKAGE			

DISCLAIMER:

- 1- The information given herein, including the specifications and dimensions, is subject to change without prior notice to improve product characteristics. Before ordering, purchasers are advised to contact the Sensitron Semiconductor sales department for the latest version of the datasheet(s).
- 2- In cases where extremely high reliability is required (such as use in nuclear power control, aerospace and aviation, traffic equipment, medical equipment, and safety equipment), safety should be ensured by using semiconductor devices that feature assured safety or by means of users' fail-safe precautions or other arrangement.
- 3- In no event shall Sensitron Semiconductor be liable for any damages that may result from an accident or any other cause during operation of the user's units according to the datasheet(s). Sensitron Semiconductor assumes no responsibility for any intellectual property claims or any other problems that may result from applications of information, products or circuits described in the datasheets.
- 4- In no event shall Sensitron Semiconductor be liable for any failure in a semiconductor device or any secondary damage resulting from use at a value exceeding the absolute maximum rating.
- 5- No license is granted by the datasheet(s) under any patents or other rights of any third party or Sensitron Semiconductor.
- 6- The datasheet(s) may not be reproduced or duplicated, in any form, in whole or part, without the expressed written permission of Sensitron Semiconductor.
- 7- The products (technologies) described in the datasheet(s) are not to be provided to any party whose purpose in their application will hinder maintenance of international peace and safety nor are they to be applied to that purpose by their direct purchasers or any third party. When exporting these products (technologies), the necessary procedures are to be taken in accordance with related laws and regulations.