


MECHANICAL DATA

Dimensions in mm (inches)

TO18

Underside View

PIN1 – EMITER

PIN 2 - BASE

PIN 3 - COLLECTOR

PNP SILICON TRANSISTOR

FEATURES

- SILICON PNP TRANSISTOR
- HIGH SPEED, LOW SATURATION SWITCH

APPLICATIONS:

GENERAL PURPOSE SWITCHING APPLICATIONS

ABSOLUTE MAXIMUM RATINGS (T_A = 25°C unless otherwise stated)

V_{CBO}	Collector – Base Voltage	-12V		
V_{CEO}	Collector – Emitter Voltage	-12V		
V_{EBO}	Emitter – Base Voltage	-4V		
I _C	Collector Current	200mA		
P_{D}	Total Device Dissipation @ T _A =25°C	360mW		
	Derate above 25°C	2.06mW / °C		
P_{D}	Total Device Dissipation @ T _C =25°C	1.2W		
	Derate above 25°C	6.85mW / °C		
T_{STG} , T_{J}	Operating and Storage Temperature Range	−65 to +200°C		

Semelab PIc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

Semelab plc. Telephone +44(0)1455) 556565. Fax +44(0)1455) 552612.

E-mail: sales@semelab.co.uk Website: http://www.semelab.co.uk

ELECTRICAL CHARACTERISTICS ($T_A = 25$ °C unless otherwise stated)

	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
BV _{CEO(SUS)}	Collector – Base BreakdownVoltage	$I_C = -10mA$	I _B = 0	-12			
BV _{CES}	Collector – Emitter Breakdown Voltage	$I_{C} = -10 \mu A$	$V_{BE} = 0$	-12			
BV _{CBO}	Collector – Base Breakdown Voltage	$I_{C} = -10 \mu A$	I _E = 0	-12			V
BV _{EBO}	Emitter Base Breakdown Voltage	I _E = 100μA	I _C = 0	-4			
I _{CBO}	Collector Cut-off Current	V _{CB} = -6V	T _{amb} = 125°C			-10	μΑ
I _{CES}	Collector Cut-off Current	$V_{CE} = -6V$	$V_{BE} = 0$			-80	nA
I _B	Base Current	V _{CE} = -6V	$V_{BE} = 0$			-80	
V _{CE(sat)}	Collector – Emitter Saturation Voltage	$I_C = -10mA$	I _B = -1mA			-0.15	V
		$I_C = -30 \text{mA}$	$I_B = -3mA$			-0.2	
		$I_{C} = -100 \text{mA}$	I _B = -10mA			-0.5	
V _{BE(sat)}	Base – Emitter On Voltage	$I_C = -10mA$	I _B = -1mA	-0.78		-0.98	V
		$I_C = -30 \text{mA}$	$I_B = -3mA$	-0.85		-1.2	
		$I_{C} = -100 \text{mA}$	I _B = -10mA			-1.7	
h _{FE}	DC Current Gain	$I_C = -10mA$	$V_{CE} = -0.3V$	30			_
		$I_C = -30 \text{mA}$	V _{CE} = -0.5V	40		150	
		$I_C = -30 \text{mA}$	V _{CE} = -0.5V	17			
			T _{amb} = -55°C				
		$I_C = -30 \text{mA}$	$V_{CE} = -0.5V$	25			
f _T	Current Gain Bandwidth Product	V _{CE} = -10V	f = 100MHz	400			MHz
		$I_C = -30 \text{mA}$					
C _{ob}	Output Capacitance	$V_{CB} = -5V$	I _E = 0			6	- pF
		f = 140KHz					
C _{ib}	Input Capacitance	$V_{BE} = -0.5V$	I _C = 0			6	
		f = 140KHz					
t _{on}	Turn on Time	$V_{CC} = -2V$ $I_C = -30$ mA			60		
			$I_C = -30 \text{mA}$				- ns
t _{off}	Turn off Time	$I_{B1} = -I_{B2} = 1.5 \text{mA}$				90	113

^{*} Pulse Test: $t_p \le 300 \mu s$, $\delta \le 1\%$.

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

Semelab plc. Telephone +44(0)1455) 556565. Fax +44(0)1455) 552612.

E-mail: sales@semelab.co.uk Website: http://www.semelab.co.uk