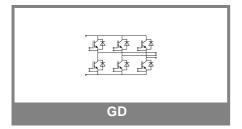


SEMITRANS[®] 6

Superfast NPT-IGBT Module

SKM 100GD063DL

Features


- Si structure (NPT IGBT)
- V_{CE(sat)} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I_C

Typical Applications*

- Switched mode power supplies
- Three phase inverters for AC motor speed control
- For f_{sw} > 10 kHz

Absolute Maximum Ratings $T_{case} = 25^{\circ}C$, unless otherwise specified						
Symbol	Conditions		Values	Units		
IGBT				_		
V_{CES}	T _j = 25 °C		600	V		
I _C	T _j = 150 °C	T _c = 25 °C	130	Α		
		$T_c = 80 ^{\circ}C$	95	Α		
I _{CRM}	I _{CRM} =2xI _{Cnom}		200	Α		
$V_{\rm GES}$			± 20	V		
t _{psc}	V_{CC} = 300 V; $V_{GE} \le 20$ V; $V_{CES} < 600$ V	T _j = 125 °C	10	μs		
Inverse Diode						
I_{F}	T _j = 150 °C	$T_c = 25 ^{\circ}C$	100	Α		
		$T_c = 80 ^{\circ}C$	75	Α		
I _{FRM}	I _{FRM} =2xI _{Fnom}		200	Α		
I _{FSM}	$t_p = 10 \text{ ms; sin.}$	T _j = 150 °C	720	Α		
Module						
I _{t(RMS)}				Α		
T_{vj}			- 40 + 150	°C		
T _{stg}			- 40 + 125	°C		
V _{isol}	AC, 1 min.		2500	V		

Characteristics T _{case} =		25°C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units
IGBT	•					•
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_{C} = 3 \text{ mA}$		4,5	5,5	6,5	V
I _{CES}	$V_{GE} = 0 V, V_{CE} = V_{CES}$	T _j = 25 °C		0,15	0,45	mA
V_{CE0}		T _j = 25 °C		1,05		V
		T _j = 125 °C		1		V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		10,5		mΩ
		T _j = 125°C		14		mΩ
V _{CE(sat)}	I _{Cnom} = 100 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}		2,1	2,5	V
		$T_j = 125^{\circ}C_{chiplev}$		2,4	2,8	V
C _{ies}				5,6		nF
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		0,6		nF
C _{res}				0,4		nF
Q_G	V _{GE} = 0V15V			240		nC
t _{d(on)}				50		ns
t _r	$R_{Gon} = 10 \Omega$	V _{CC} = 300V		40		ns
E _{on}		I _C = 100A		4		mJ
t _{d(off)}	$R_{Goff} = 10 \Omega$	T _j = 125 °C		300		ns
t _f		$V_{GE} = \pm 15V$		35		ns
E _{off}				3		mJ
R _{th(j-c)}	per IGBT				0,27	K/W

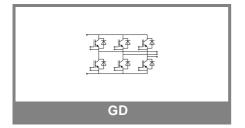
SEMITRANS[®] 6

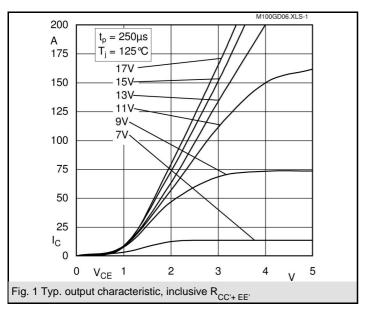
Superfast NPT-IGBT Module

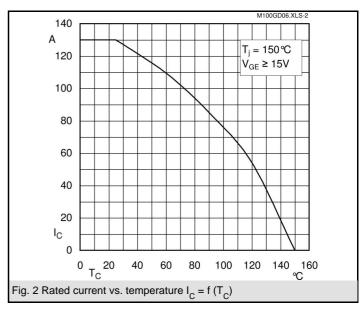
SKM 100GD063DL

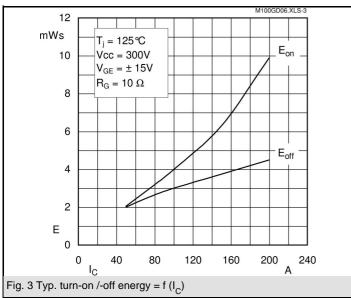
Featu	ires
-------	------

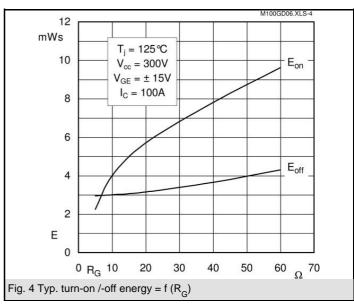
- Si structure (NPT IGBT)
- V_{CE(sat)} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I_C

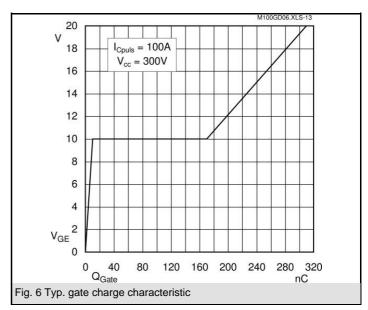

Typical Applications*

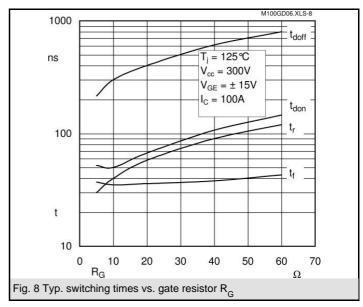

- Switched mode power supplies
- Three phase inverters for AC motor speed control
- For f_{sw} > 10 kHz

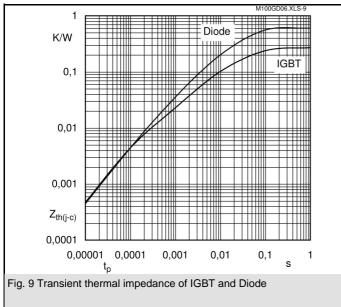

Characteristics						
Symbol	Conditions		min.	typ.	max.	Units
Inverse D						
$V_F = V_{EC}$	$I_{Fnom} = 100 \text{ A}; V_{GE} = 0 \text{ V} $ $T_j = 2$			1,55	1,9	V
	T _j = 1	25 °C _{chiplev.}		1,55		V
V_{F0}	T _j = 2	5 °C			0,9	V
r _F	T _j = 2	5 °C			10	mΩ
I _{RRM}	$I_F = 100 \text{ A}$ $T_i = 1$	25 °C		8		Α
Q_{rr}	di/dt = 1000 A/µs			44		μC
E _{rr}	V _{GE} = -15 V; V _{CC} = 600 V			1,5		mJ
R _{th(j-c)D}	per diode				0,6	K/W
Module						
L _{CE}					60	nH
R _{th(c-s)}	per module				0,05	K/W
M _s	to heat sink M5		4		5	Nm
w					175	g

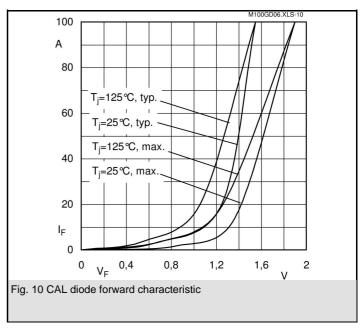

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

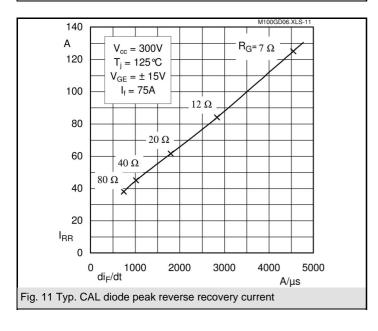

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

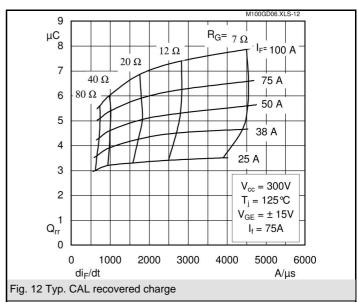


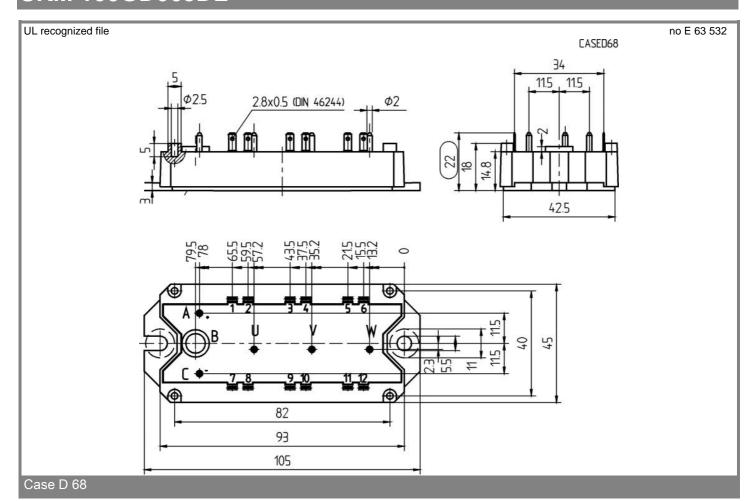


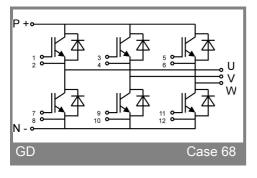












5 24-08-2009 DIL © by SEMIKRON