Driver Transistor

NPN Silicon

Moisture Sensitivity Level: 1

ESD Rating: Human Body Model – 4 kV Machine Model – 400 V

Features

- AEC-Q101 Qualified and PPAP Capable
- S Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant*

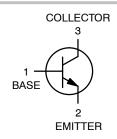
MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CEO}	80	Vdc
Collector-Base Voltage	V _{CBO}	80	Vdc
Emitter-Base Voltage	V _{EBO}	4.0	Vdc
Collector Current - Continuous	I _C	500	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation FR-5 Board T _A = 25°C	P _D	150	mW
Thermal Resistance, Junction to Ambient	$R_{ heta JA}$	833	°C/W
Junction and Storage Temperature	T _J , T _{stg}	-55 to +150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.



ON Semiconductor®

http://onsemi.com

SC-70 CASE 419 STYLE 3

MARKING DIAGRAM

GM = Specific Device Code M = Date Code

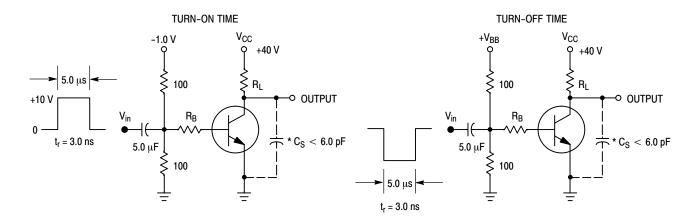
■ = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]		
MMBTA06WT1G	SC-70 (Pb-Free)	3,000 / Tape & Reel		
SMMBTA06WT1G	SC-70 (Pb-Free)	3,000 / Tape & Reel		

For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


^{*}Date Code orientation may vary depending upon manufacturing location.

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector–Emitter Breakdown Voltage (Note 1) $(I_C = 1.0 \text{ mAdc}, I_B = 0)$	V _{(BR)CEO}	80	_	Vdc
Emitter-Base Breakdown Voltage ($I_E = 100 \mu Adc, I_C = 0$)	V _{(BR)EBO}	4.0	_	Vdc
Collector Cutoff Current (V _{CE} = 60 Vdc, I _B = 0)	I _{CES}	-	0.1	μAdc
Collector Cutoff Current (V _{CB} = 80 Vdc, I _E = 0)	I _{CBO}	-	0.1	μAdc
ON CHARACTERISTICS				
DC Current Gain ($I_C = 10 \text{ mAdc}$, $V_{CE} = 1.0 \text{ Vdc}$) ($I_C = 100 \text{ mAdc}$, $V_{CE} = 1.0 \text{ Vdc}$)	h _{FE}	100 100	- -	-
Collector-Emitter Saturation Voltage (I _C = 100 mAdc, I _B = 10 mAdc)	V _{CE(sat)}	_	0.25	Vdc
Base – Emitter On Voltage ($I_C = 100 \text{ mAdc}$, $V_{CE} = 1.0 \text{ Vdc}$)	V _{BE(on)}	_	1.2	Vdc
SMALL-SIGNAL CHARACTERISTICS				
Current-Gain - Bandwidth Product (Note 2) (I _C = 10 mA, V_{CE} = 2.0 V, f = 100 MHz)	f _T	100	_	MHz

Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2.0%.
f_T is defined as the frequency at which |h_{fe}| extrapolates to unity.

^{*}Total Shunt Capacitance of Test Jig and Connectors For PNP Test Circuits, Reverse All Voltage Polarities

Figure 1. Switching Time Test Circuits

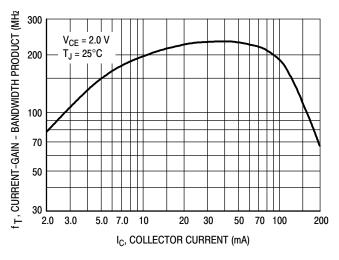


Figure 2. Current-Gain — Bandwidth Product

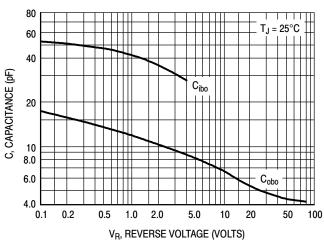


Figure 3. Capacitance

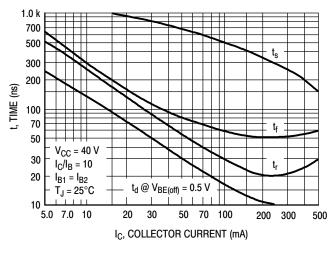


Figure 4. Switching Time

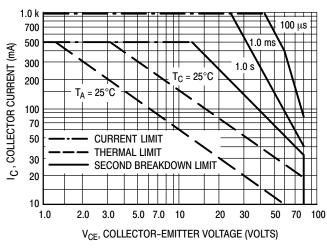


Figure 5. Active-Region Safe Operating Area



Figure 6. DC Current Gain

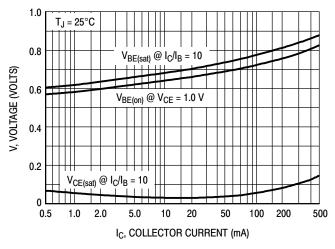
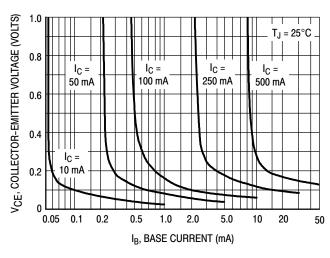



Figure 7. "ON" Voltages

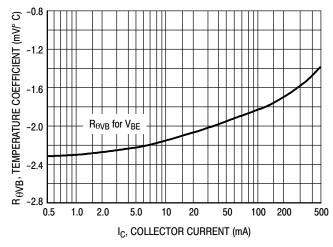
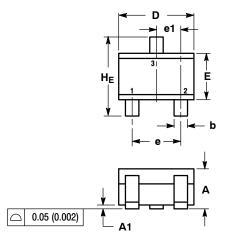
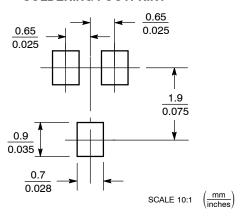



Figure 8. Collector Saturation Region

Figure 9. Base-Emitter Temperature Coefficient

PACKAGE DIMENSIONS

SC-70 (SOT-323) CASE 419-04 **ISSUE N**



- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.80	0.90	1.00	0.032	0.035	0.040
A1	0.00	0.05	0.10	0.000	0.002	0.004
A2		0.70 REF			0.028 REF	
b	0.30	0.35	0.40	0.012	0.014	0.016
c	0.10	0.18	0.25	0.004	0.007	0.010
D	1.80	2.10	2.20	0.071	0.083	0.087
E	1.15	1.24	1.35	0.045	0.049	0.053
е	1.20	1.30	1.40	0.047	0.051	0.055
e1		0.65 BSC			0.026 BSC	;
L	0.20	0.38	0.56	0.008	0.015	0.022
HE	2.00	2.10	2.40	0.079	0.083	0.095

PIN 1. BASE 2. EMITT EMITTER 3. COLLECTOR

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and una are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

N. American Technical Support: 800-282-9855 Toll Free

Europe, Middle East and Africa Technical Support:

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada

Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

USA/Canada

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative