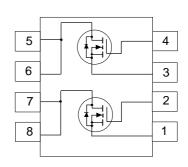


FDS9936A

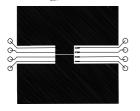
Dual N-Channel Enhancement Mode Field Effect Transistor


General Description


SO-8 N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, high cell density, DMOS technology. This very high density process is especially tailored to provide superior switching performance and minimize on-state resistance. These devices are particularly suited for low voltage applications such as disk drive motor control, battery powered circuits where fast switching, low in-line power loss, and resistance to transients are needed.

Features

- $\begin{tabular}{ll} \hline & 5.5~A, 30~V.~R_{\rm DS(ON)} = 0.040~\Omega~@~V_{\rm GS} = 10~V, \\ R_{\rm DS(ON)} = 0.060~\Omega~@~V_{\rm GS} = 4.5~V. \\ \end{tabular}$
- High density cell design for extremely low R_{DS(ON)}.
- High power and current handling capability in a widely used surface mount package.
- Dual MOSFET in surface mount package



Absolute Maximum Ratings $T_A = 25^{\circ}C$ unless other wise noted

Symbol	Parameter	FDS9936A	Units
V _{DSS}	Drain-Source Voltage	30	V
V _{GSS}	Gate-Source Voltage	±20	V
l _D	Drain Current - Continuous (Note 1a)	5.5	А
	- Pulsed	20	
P_{D}	Power Dissipation for Dual Operation	2	W
	Power Dissipation for Single Operation (Note 1a)	1.6	
	(Note 1b)	1	
	(Note 1c)	0.9	
Γ_{J} , T_{STG}	Operating and Storage Temperature Range	-55 to 150	°C
THERMA	L CHARACTERISTICS		
R_{BJA}	Thermal Resistance, Junction-to-Ambient (Note 1a)	78	°C/W
R _{θJC}	Thermal Resistance, Junction-to-Case (Note 1)	40	°C/W

Symbol	Parameter	Conditions	Min	Тур	Max	Units
OFF CHAF	ACTERISTICS					
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_{D} = 250 \mu\text{A}$	30			V
Δ BV _{DSS} / Δ T _J	Breakdown Voltage Temp. Coefficient	I _D = 250 μA, Referenced to 25 °C		32		mV/°C
DSS	Zero Gate Voltage Drain Current	$V_{DS} = 24 \text{ V}, \ V_{GS} = 0 \text{ V}$			1	μA
		T _J = 55°C			10	μA
GSSF	Gate - Body Leakage, Forward	$V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$			100	nA
GSSR	Gate - Body Leakage, Reverse	$V_{GS} = -20 \text{ V}, V_{DS} = 0 \text{ V}$			-100	nA
ON CHARA	ACTERISTICS (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu\text{A}$	1	1.5	3	V
$\Delta V_{GS(th)}/\Delta T_{J}$	Gate Threshold Voltage Temp. Coefficient	$I_D = 250 \mu A$, Referenced to 25 °C		-4.3		mV/°C
R _{DS(ON)}	Static Drain-Source On-Resistance	$V_{GS} = 10 \text{ V}, I_D = 5.5 \text{ A}$		0.03	0.04	Ω
		T _J =125°C		0.046	0.068	
		$V_{GS} = 4.5 \text{ V}, I_{D} = 4.5 \text{ A}$		0.045	0.06	
D(ON)	On-State Drain Current	$V_{GS} = 10 \text{ V}, \ V_{DS} = 5 \text{ V}$	20			Α
) _{FS}	Forward Transconductance	$V_{DS} = 5 \text{ V}, \ I_{D} = 4.7 \text{ A}$		7		S
OYNAMIC	CHARACTERISTICS					
Ciss	Input Capacitance	$V_{DS} = 15 \text{ V}, \ V_{GS} = 0 \text{ V},$ f = 1.0 MHz		350		pF
Coss	Output Capacitance	f = 1.0 MHz		220		pF
C _{rss}	Reverse Transfer Capacitance			80		pF
SWITCHING	G CHARACTERISTICS (Note 2)					
'D(on)	Turn - On Delay Time	$V_{DD} = 10 \text{ V}, \ I_{D} = 1 \text{ A},$		7.5	15	ns
r	Turn - On Rise Time	$V_{GS} = 4.5 \text{ V}, \ R_{GEN} = 6 \Omega$		12	25	
D(off)	Turn - Off Delay Time			13	25	
f	Turn - Off Fall Time			6	15	
Q_g	Total Gate Charge	$V_{DS} = 15 \text{ V}, I_{D} = 5 \text{ A},$		12	17	nC
Q_{gs}	Gate-Source Charge	V _{GS} = 10 V		2.1		
Q_{gd}	Gate-Drain Charge			2.6		
DRAIN-SO	JRCE DIODE CHARACTERISTICS AND MAX	KIMUM RATINGS				
s	Maximum Continuous Drain-Source Diode Fo	orward Current			1.3	Α
V _{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_{S} = 1.3 \text{ A} \text{ (Note 2)}$		0.76	1.2	V

1. $R_{g,h}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{g,C}$ is guaranteed by design while $R_{g,C,h}$ is determined by the user's board design.

a. 78°C/W on a 0.5 in² pad of 2oz copper.

Scale 1 : 1 on letter size paper 2. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

Typical Electrical Characteristics

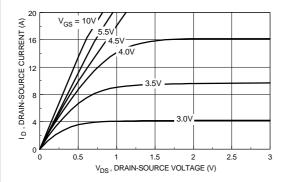


Figure 1. On-Region Characteristics.

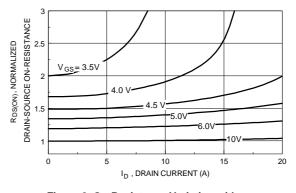


Figure 2. On-Resistance Variation with Drain Current and Gate Voltage.

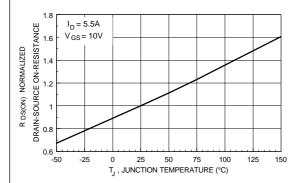


Figure 3. On-Resistance Variation with Temperature.

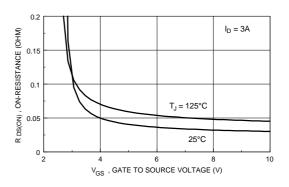


Figure 4. On-Resistance Variation with Gate-to-Source Voltage.

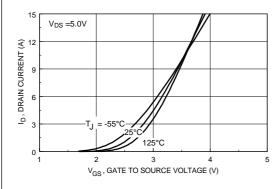


Figure 5. Transfer Characteristics.

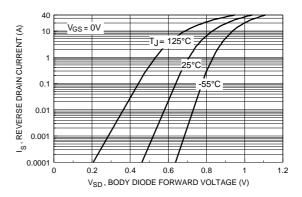


Figure 6 . Body Diode Forward Voltage Variation with Source Current and Temperature.

Typical Electrical Characteristics (continued)

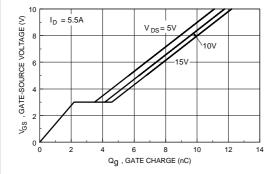


Figure 7. Gate Charge Characteristics.

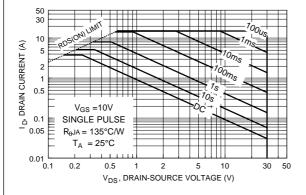


Figure 9. Maximum Safe Operating Area.

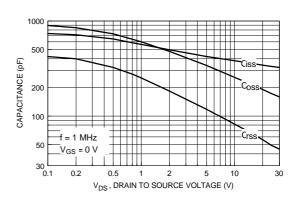


Figure 8. Capacitance Characteristics.

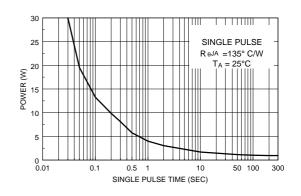
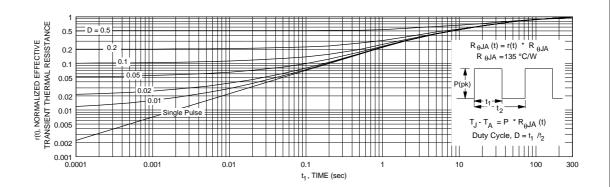
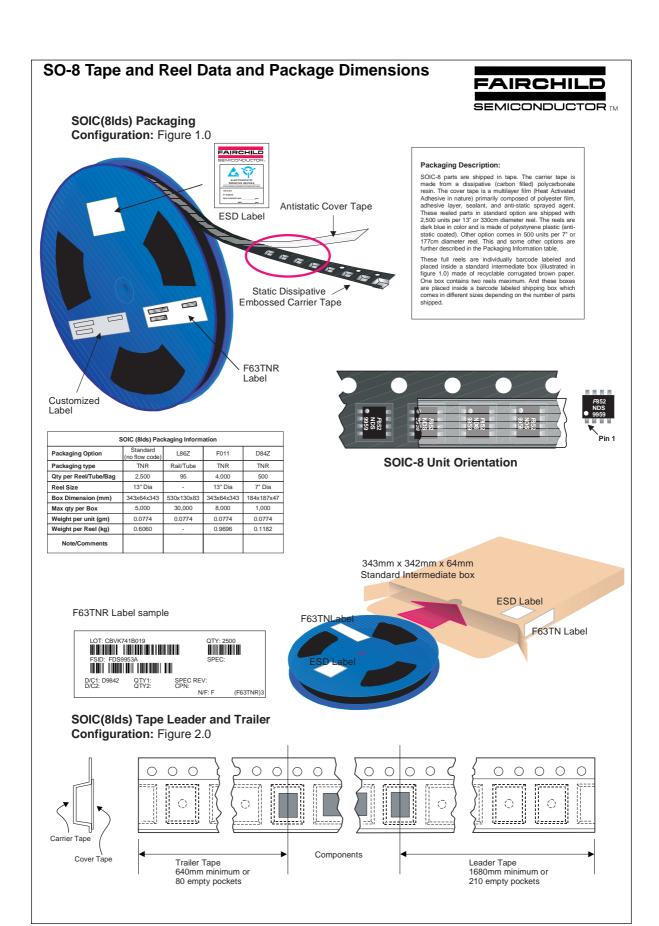
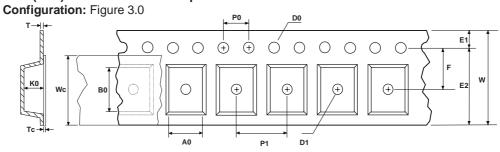


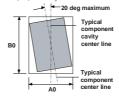
Figure 10. Single Pulse Maximum Power Dissipation.


Figure 11. Transient Thermal Response Curve.

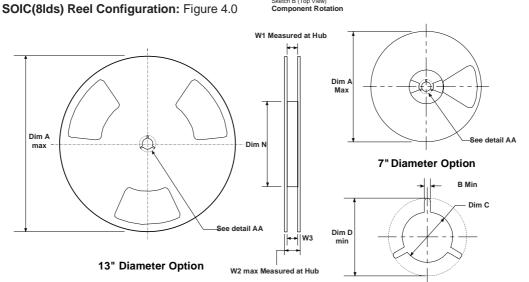
Thermal characterization performed using the conditions described in Note 1c. Transient thermal response will change depending on the circuit board design.

SOIC(8lds) Embossed Carrier Tape


User Direction of Feed	
	_

Dimensions are in millimeter														
Pkg type	A0	В0	w	D0	D1	E1	E2	F	P1	P0	K0	Т	Wc	Тс
SOIC(8lds) (12mm)	6.50 +/-0.10	5.30 +/-0.10	12.0 +/-0.3	1.55 +/-0.05	1.60 +/-0.10	1.75 +/-0.10	10.25 min	5.50 +/-0.05	8.0 +/-0.1	4.0 +/-0.1	2.1 +/-0.10	0.450 +/- 0.150	9.2 +/-0.3	0.06 +/-0.02

Notes: A0, B0, and K0 dimensions are determined with respect to the EIA/Jedec RS-481 $\,$ rotational and lateral movement requirements (see sketches A, B, and C).


Sketch A (Side or Front Sectional View)
Component Rotation

Sketch B (Top View)
Component Rotation

Sketch C (Top View)
Component lateral movement

Dimensions are in inches and millimeters									
Tape Size	Reel Option	Dim A	Dim B	Dim C	Dim D	Dim N	Dim W1	Dim W2	Dim W3 (LSL-USL)
12mm	7" Dia	7.00 177.8	0.059 1.5	512 +0.020/-0.008 13 +0.5/-0.2	0.795 20.2	2.165 55	0.488 +0.078/-0.000 12.4 +2/0	0.724 18.4	0.469 - 0.606 11.9 - 15.4
12mm	13" Dia	13.00 330	0.059 1.5	512 +0.020/-0.008 13 +0.5/-0.2	0.795 20.2	7.00 178	0.488 +0.078/-0.000 12.4 +2/0	0.724 18.4	0.469 - 0.606 11.9 - 15.4

SO-8 Tape and Reel Data and Package Dimensions, continued SOIC-8 (FS PKG Code S1) 1:1 Scale 1:1 on letter size paper Dimensions shown below are in: inches [millimeters] Part Weight per unit (gram): 0.0774 LEAD NO. IDENTIFICATION 0.0200 [0.51] 6.20 5.80 0.2260 [5.74] 0.0390 [0.99] 0.0500 [1.27] - 0.0500 [1.27] CS B 0.010[0.25](1) [0.25] LAND PATTERN RECOMMENDATION 0.0098 0.25 - 0.0040 0.10 GAGE PLANE. SEATING PLANE 0.004[0.10] 8°MAX. TYP.ALL LEADS (3)0.0140 [0.36]ALL LEAD TIPS 1.27 TYP. ALL LEADS NOTES: UNLESS OTHERWISE SPECIFIED 1. STANDARD LEAD FINISH: 200 MICROINCHES / 5.08 MICRONS MINIMUM LEAD / TIN (SOLDER) ON COPPER. SO 0.150 WIDE 8 LEADS THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH MAXIMUM LEAD 0.024 [0.609]

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

E²CMOS™ PowerTrench™

 $\begin{array}{ccc} \mathsf{FACT^{\mathsf{TM}}} & \mathsf{QFET^{\mathsf{TM}}} \\ \mathsf{FACT} \ \mathsf{Quiet} \ \mathsf{Series^{\mathsf{TM}}} & \mathsf{QS^{\mathsf{TM}}} \end{array}$

 $\begin{array}{lll} {\sf FAST}^{\circledcirc} & {\sf Quiet\ Series^{\sf TM}} \\ {\sf FASTr^{\sf TM}} & {\sf SuperSOT^{\sf TM}\text{--}3} \\ {\sf GTO^{\sf TM}} & {\sf SuperSOT^{\sf TM}\text{--}6} \\ {\sf HiSeC^{\sf TM}} & {\sf SuperSOT^{\sf TM}\text{--}8} \end{array}$

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the

 A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

This datasheet has been downloaded from:

www.EEworld.com.cn

Free Download
Daily Updated Database
100% Free Datasheet Search Site
100% Free IC Replacement Search Site
Convenient Electronic Dictionary
Fast Search System

www.EEworld.com.cn

Copyright © Each Manufacturing Company